-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
47 lines (38 loc) · 1.58 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import uvicorn
from PIL import Image
from fastapi import FastAPI, File, UploadFile, HTTPException
import io
import os
from dotenv import load_dotenv
import google.generativeai as genai
from trulens_eval import Feedback, Tru, OpenAI, TruBasicApp
load_dotenv()
genai.configure(api_key=os.getenv('GOOGLE_API_KEY'))
gemini_model = genai.GenerativeModel('gemini-pro-vision')
tru = Tru(database_url=os.getenv('DATABASE_URL'))
app = FastAPI()
def setup_feedbacks():
openai_provider = OpenAI()
relevance = Feedback(openai_provider.relevance).on_input_output()
conciseness = Feedback(openai_provider.conciseness).on_output()
return [relevance, conciseness]
def run_gemini(query, image):
message = f'''Analyze the image and answer the question below. If the image is unrelated,
ignore it and answer based on textual knowledge. Keep your response as concise as possible.
Question: {query}'''
response = gemini_model.generate_content([message, image])
return response.text
feedbacks = setup_feedbacks()
gemini_recorder = TruBasicApp(run_gemini, app_id="Gemini-Vision", feedbacks=feedbacks)
@app.post("/process/")
async def process(query: str, image: UploadFile = File(...)):
try:
image_data = await image.read()
pil_img = Image.open(io.BytesIO(image_data))
with gemini_recorder as recording:
response = gemini_recorder.app(query, pil_img)
return response
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)