see details
- Training
- Evaluation
- Export onnx
- Upload source code
- Upload weight convert from paddle, see links
- Align training details with the paddle version
- Tuning rtdetr based on pretrained weights
Model | Dataset | Input Size | APval | AP50val | #Params(M) | FPS | checkpoint |
---|---|---|---|---|---|---|---|
rtdetr_r18vd | COCO | 640 | 46.4 | 63.7 | 20 | 217 | url* |
rtdetr_r34vd | COCO | 640 | 48.9 | 66.8 | 31 | 161 | url* |
rtdetr_r50vd_m | COCO | 640 | 51.3 | 69.5 | 36 | 145 | url* |
rtdetr_r50vd | COCO | 640 | 53.1 | 71.2 | 42 | 108 | url* |
rtdetr_r101vd | COCO | 640 | 54.3 | 72.8 | 76 | 74 | url* |
rtdetr_18vd | COCO+Objects365 | 640 | 49.0 | 66.5 | 20 | 217 | url* |
rtdetr_r50vd | COCO+Objects365 | 640 | 55.2 | 73.4 | 42 | 108 | url* |
rtdetr_r101vd | COCO+Objects365 | 640 | 56.2 | 74.5 | 76 | 74 | url* |
Notes
COCO + Objects365
in the table means finetuned model onCOCO
using pretrained weights trained onObjects365
.url
*
is the url of pretrained weights convert from paddle model for save energy. It may have slight differences between this table and paper
Install
pip install -r requirements.txt
Data
- Download and extract COCO 2017 train and val images.
path/to/coco/
annotations/ # annotation json files
train2017/ # train images
val2017/ # val images
- Modify config
img_folder
,ann_file
Training & Evaluation
- Training on a Single GPU:
# training on single-gpu
export CUDA_VISIBLE_DEVICES=0
python tools/train.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml
- Training on Multiple GPUs:
# train on multi-gpu
export CUDA_VISIBLE_DEVICES=0,1,2,3
torchrun --nproc_per_node=4 tools/train.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml
- Evaluation on Multiple GPUs:
# val on multi-gpu
export CUDA_VISIBLE_DEVICES=0,1,2,3
torchrun --nproc_per_node=4 tools/train.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml -r path/to/checkpoint --test-only
Export
python tools/export_onnx.py -c configs/rtdetr/rtdetr_r18vd_6x_coco.yml -r path/to/checkpoint --check
Train custom data
-
set
remap_mscoco_category: False
. This variable only works for ms-coco dataset. If you want to useremap_mscoco_category
logic on your dataset, please modify variablemscoco_category2name
based on your dataset. -
add
-t path/to/checkpoint
(optinal) to tuning rtdetr based on pretrained checkpoint. see training script details.