forked from micronutrientsupport/fct
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfct_quality_check.R
304 lines (194 loc) · 9.6 KB
/
fct_quality_check.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
library(tidyverse)
###-------------------------LOADING FCT DATASET----------------------#####
FCT <- read.csv(here::here('data', 'FCT_10.csv'))
mwi_mn_raw <- readxl::read_excel(here::here('data',
'2015_Joy_crop-min-composition.xlsx'),
sheet = 'STable7', skip = 2)
######---------------------1) SOP calculation -------------------------#########
#Data set with SOP mean, max and min per FCT and
SOP_sum <- FCT %>% group_by(FCT) %>% summarise(no = length(fooditem),
mean_SOP = mean(SOP, na.rm = TRUE),
sd_SOP = sd(SOP, na.rm = TRUE),
min_SOP = min(SOP, na.rm = TRUE),
max_SOP = max(SOP, na.rm = TRUE))
#Preferable level (1) for SOP 97-103g
FCT <- FCT %>% mutate(low_quality_SOP = case_when(
is.na(SOP) ~ NA,
SOP <= 97 ~ TRUE,
SOP >= 103 ~ TRUE,
TRUE ~ FALSE))
FCT %>% group_by(FCT) %>% filter(low_quality_SOP == TRUE) %>%
summarise(no_low_quality_SOP1 = length(fooditem),
mean_low_quality_SOP1 = mean(SOP))
FCT %>% group_by(FCT, low_quality_SOP) %>%
summarise(no_low_quality_SOP1 = length(fooditem),
mean_low_quality_SOP1 = mean(SOP))
#Acceptable level (2) for SOP 95-105g
FCT <- FCT %>% mutate(low_quality_SOP = case_when(
is.na(SOP) ~ NA,
SOP <= 95 ~ TRUE,
SOP >= 105 ~ TRUE,
TRUE ~ FALSE))
FCT %>% group_by(FCT, low_quality_SOP) %>%
summarise(no_low_quality_SOP2 = length(fooditem),
mean_low_quality_SOP2 = mean(SOP))
#Data set with all the missing values per FCT and variable
missing <- FCT %>% filter(!is.na(fooditem)) %>% group_by (FCT) %>%
summarise_all(funs(sum(is.na(.))))
missing_MN <- FCT %>% filter(!is.na(fooditem)) %>%
group_by (FCT) %>%
summarise_at(vars('VITA_RAE', 'VITA', 'CARTB', 'VITC',
'VITB12', 'FOL', 'FOLDFE','FIBTG' , 'FIBC',
'FIBTS' ,'SE', 'ZN', 'ID', 'FE' , 'CA', 'PHYT',
'PHYTCPP', 'PHYTCPPD_I', 'PHYTAC', 'SOP'), funs(sum(is.na(.))))
#Data set with SOP mean, max and min per FCT and
SOP_sum <- FCT %>% group_by(FCT) %>% summarise(no = length(fooditem),
mean_SOP = mean(SOP, na.rm = TRUE),
sd_SOP = sd(SOP, na.rm = TRUE),
min_SOP = min(SOP, na.rm = TRUE),
max_SOP = max(SOP, na.rm = TRUE))
write_csv(missing_MN, here::here('data' ,'missing_MN.csv'))
write_csv(SOP_sum, here::here('data' ,'SOP.csv'))
#Quality checks - Variability of SOP
FCT %>% ggplot(aes(FCT, SOP)) + geom_boxplot()
FCT %>% filter(FCT != 'ETHFCT') %>%
ggplot(aes(FCT, SOP)) + geom_boxplot()
#Variability of key MN (minerals) by FCT
FCT %>% ggplot(aes(FCT, ZN)) + geom_boxplot()
FCT %>% ggplot(aes(FCT, SE)) + geom_boxplot()
FCT %>% ggplot(aes(FCT, FE)) + geom_boxplot()
FCT %>% ggplot(aes(FCT, ID)) + geom_boxplot()
FCT %>% ggplot(aes(FCT, CA)) + geom_boxplot()
#Variability of key MN (vitamins) by FCT
FCT %>% ggplot(aes(FCT, VITA_RAE)) + geom_boxplot()
FCT %>% ggplot(aes(FCT, VITB12)) + geom_boxplot()
FCT %>% ggplot(aes(FCT, VITC)) + geom_boxplot()
# % of missing values
naniar::vis_miss(FCT)
#heatmap of missing values per FCT
naniar::gg_miss_fct(FCT, fct = FCT)
#heatmap of missing values of the key MNs by FCT
#And saving it as png
png("heatmap.png", width = 6, height = 4, units = 'in', res = 300)
FCT %>% select('FCT', 'VITA_RAE', 'VITA', 'CARTB', 'VITC', 'VITB12', 'FOL', 'FOLDFE','FIBTG' , 'FIBC',
'FIBTS' ,'SE', 'ZN', 'ID', 'FE' , 'CA', 'PHYT', 'PHYTCPP', 'PHYTCPPD_I', 'PHYTAC', 'SOP') %>%
naniar::gg_miss_fct(fct = FCT)
dev.off()
FCT %>% select('FCT', 'SE', 'ZN', 'ID', 'FE' , 'CA') %>%
naniar::gg_miss_fct(fct = FCT)
FCT06 <- FCT %>% filter(!FCT %in% c('ETHFCT','NGAFCT', 'GMBFCT', 'UGAFCT') )
write.csv(FCT06, here::here('data', 'FCT_06.csv'))
#Calculating SOP for the WAFCT
WAFCT <- WAFCT %>%
mutate(SOP_cal = case_when(
!is.na(FAT) & !is.na(FIBTG) ~ reduce(select(., 'WATER', 'PROTCNT' ,'FAT', 'CHOAVLDF','FIBTG', 'ALC', 'ASH'), `+`),
is.na(FAT) & !is.na(FIBTG) ~ reduce(select(.,
'WATER', 'PROTCNT' ,'FATCE', 'CHOAVLDF','FIBTG', 'ALC', 'ASH'), `+`),
!is.na(FAT) & is.na(FIBTG) ~ reduce(select(., 'WATER', 'PROTCNT' ,'FAT', 'CHOAVLDF','FIBC', 'ALC', 'ASH'), `+`),
TRUE ~ reduce(select(., 'WATER', 'PROTCNT' ,'FATCE', 'CHOAVLDF','FIBC', 'ALC', 'ASH'), `+`)))
WAFCT <- WAFCT %>%
mutate(SOP_cal = case_when(
(!is.na(FAT) & !is.na(FIBTG)) ~ reduce(select(., 'WATER', 'PROTCNT' ,'FAT', 'CHOAVLDF','FIBTG', 'ALC', 'ASH'), `+`),
(is.na(FAT) & !is.na(FIBTG)) ~ reduce(select(., 'WATER', 'PROTCNT' ,'FATCE', 'CHOAVLDF','FIBTG', 'ALC', 'ASH'), `+`),
(!is.na(FAT) & is.na(FIBTG)) ~ reduce(select(., 'WATER', 'PROTCNT' ,'FAT', 'CHOAVLDF','FIBC', 'ALC', 'ASH'), `+`),
TRUE ~ reduce(select(., 'WATER', 'PROTCNT' ,'FATCE', 'CHOAVLDF','FIBC', 'ALC', 'ASH'), `+`)))
WAFCT <- WAFCT %>%
mutate(SOP_cal = ifelse((!is.na(FATCE) & !is.na(FIBC)), reduce(select(., 'WATER', 'PROTCNT' ,'FATCE', 'CHOAVLDF','FIBC', 'ALC', 'ASH'), `+`),
ifelse((is.na(FAT) & !is.na(FIBTG)), reduce(select(., 'WATER', 'PROTCNT' ,'FATCE', 'CHOAVLDF','FIBTG', 'ALC', 'ASH'), `+`),
ifelse((!is.na(FAT) & is.na(FIBTG)) ~ reduce(select(., 'WATER', 'PROTCNT' ,'FAT', 'CHOAVLDF','FIBC', 'ALC', 'ASH'), `+`),
reduce(select(., 'WATER', 'PROTCNT' ,'FAT', 'CHOAVLDF','FIBTG', 'ALC', 'ASH'), `+`)))))
#######----------------2) ASH calculation -----------------------##############
#2.1) Check availability and unit of all the minerals needed
FCT <- FCT %>% rowwise %>% mutate( CL_cal = `NA.`* 2.5,
MN_mg = MN/1000 ) #Only for MAFOODS
#2.2) Calculate the sum of all minerals
#The formula below is not valid, we need to change so it calculate
#when na.rm = TRUE
FCT <- FCT %>%
mutate(ASH_cal = reduce(select(.,
'CA', 'FE', 'CL_cal', 'MN_mg',
'MG', 'P', 'K', 'NA.', 'ZN',
'CU'), `+`))
#Check when ASH_cal is > than ASH = TRUE then is.low.quality = TRUE
#ASH_cal < than ASH can be due to lack of min data
MAFOODS <-read.csv(here::here('data', 'MAPS_MAFOODS_v01.csv'))
MAFOODS %>%
ggplot(aes(CA, foodgroup)) + geom_boxplot()
#Create a function with a loop to see all the variables of interest (mineral mn)
#sorted by foodgroup
#we can use this f(x) for other dataset
plotBoxFunc <- function(x, na.rm = TRUE, ...) {
nm <- c("CA", "CU", "FE", "MG", "SE", "ZN")
for (i in seq_along(nm)) {
plots <-ggplot(x,aes_string(x = nm[i])) +
geom_boxplot(aes(y = foodgroup))
ggsave(plots,filename=paste("plot",nm[i],".png",sep=""))
}
}
plotBoxFunc(MAFOODS) ## execute function
MAFOODS %>% dplyr::filter(CA >700) %>% pull(fooditem, ref)
######-------------------4) VARIABILITY calculation -------------#####
#Re-name variables
mwi_mn <- mwi_mn_raw %>% rename(fooditem = '...1',
foodtissue = '...2',
foodnotes = '...3',
soiltype = '...4',
n_sample = 'Ca',
ca_mean = '...7',
ca_sd = '...8',
ca_median = '...9',
cu_mean = '...16',
cu_sd = '...17',
cu_median = '...18',
fe_mean = '...25',
fe_sd = '...26',
fe_median = '...27',
mg_mean = '...34',
mg_sd = '...35',
mg_median = '...36',
se_mean = '...43',
se_sd = '...44',
se_median = '...45',
zn_mean = '...52',
zn_sd = '...53',
zn_median = '...54')
#Filtering items with combined data and more than 1 sample
mwi_mn <- mwi_mn %>%
filter(soiltype == 'Combined', n_sample != "1") %>%
select(!starts_with('...'))
mn <- c('ca', 'cu', 'fe', 'mg', 'se', 'zn')
mwi_mn <- mwi_mn %>% mutate_at(vars(starts_with(mn)), as.numeric)
#Trying to identify food items with high variability
#we want to flag possible quality issues w/i the data
#Checking 3-sd > mean
mwi_mn <- mwi_mn %>% mutate(is_low_quality = case_when(
ca_mean < (ca_sd*3) ~ 'ca',
cu_mean < (cu_sd*3) ~ 'cu',
fe_mean < (fe_sd*3) ~ 'fe',
mg_mean < (mg_sd*3) ~ 'mg',
se_mean < (se_sd*3) ~ 'se',
zn_mean < (zn_sd*3) ~ 'zn',
TRUE ~ 'NO'
))
#Checking 2-sd > mean
mwi_mn <- mwi_mn %>% mutate(is_low_quality = case_when(
ca_mean < (ca_sd*2) ~ 'ca',
cu_mean < (cu_sd*2) ~ 'cu',
fe_mean < (fe_sd*2) ~ 'fe',
mg_mean < (mg_sd*2) ~ 'mg',
se_mean < (se_sd*2) ~ 'se',
zn_mean < (zn_sd*2) ~ 'zn',
TRUE ~ 'NO'
))
#Checking sd > mean
mwi_mn <- mwi_mn %>% mutate(is_low_quality = case_when(
ca_mean < ca_sd ~ 'ca',
cu_mean < cu_sd ~ 'cu',
fe_mean < fe_sd ~ 'fe',
mg_mean < mg_sd ~ 'mg',
se_mean < se_sd ~ 'se',
zn_mean < zn_sd ~ 'zn',
TRUE ~ 'NO'
))
mwi_mn %>% filter(is_low_quality == 'NO')
######---------------------END -------------#####