-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_control_XL_cineca.sh
16 lines (14 loc) · 1.35 KB
/
run_control_XL_cineca.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/bin/bash
#SBATCH -A IscrC_GenOpt
#SBATCH -p boost_usr_prod
#SBATCH --time=24:00:00 # format: HH:MM:SS
#SBATCH --nodes=1 # 1 nodes
#SBATCH --ntasks-per-node=1 # 4 tasks out of 32
#SBATCH --gres=gpu:1 # 4 gpus per node out of 4
#SBATCH --cpus-per-task=4
#SBATCH --job-name=controlneteeg
echo "NODELIST="${SLURM_NODELIST}
export WANDB_MODE=offline
module load anaconda3
conda activate controlnetxl
srun accelerate launch src/diffusers/examples/controlnet/train_controlnet_sdxl.py --caption_from_classifier --pretrained_vae_model_name_or_path="madebyollin/sdxl-vae-fp16-fix" --pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0" --output_dir="/leonardo_scratch/fast/IscrC_GenOpt/luigi/Documents/DrEEam/src/diffusers/examples/controlnet/SDXL_model_out_CVPR_MULTISUB_CLASSIFIER_CAPTION" --dataset_name=luigi-s/EEG_Image_CVPR_ALL_subj --conditioning_image_column=conditioning_image --image_column=image --caption_column=caption --mixed_precision="fp16" --resolution=1024 --learning_rate=1e-5 --max_train_steps=15000 --train_batch_size=4 --num_train_epochs=100 --gradient_accumulation_steps=4 --report_to="wandb" --seed=42 --tracker_project_name=controlnet --checkpointing_steps=1000 --validation_steps=500 --validation_image ./using_VAL_DATASET_PLACEHOLDER.jpeg --validation_prompt "we are using val dataset hopefuly"