-
Notifications
You must be signed in to change notification settings - Fork 0
/
runIMAT.m
36 lines (27 loc) · 1.19 KB
/
runIMAT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
load('recon22.mat');
changeCobraSolver('glpk','all');
model = recon22;
RPMImediumSimulation;
% Import the gene expression data
gxData = readtable('DATASET SenescenceGEM_ControlSen_geneExpressionData.txt');
% We need to choose whether we model the CONTROL or the SENESCENCE
% expression data. With the lines of coding below, we "separate" the
% control and senescence data
controlData = gxData(:,[1,2,3,4]);
senescenceData = gxData(:,[1,2,3,5]);
controlData.Properties.VariableNames{'HGNC_ID'} = 'gene';
controlData.Properties.VariableNames{'Control_GeneExpression_Level'} = 'value';
% Assign reaction expressions
[expressionRxns, parsedGPR] = mapExpressionToReactions(modelRPMI, controlData);
meanExpression = mean(expressionRxns);
standardDevExpr = std (expressionRxns);
modelControl = writeCbModel(modelRPMI, 'xls', 'modelRPMIcontrol');
upper = meanExpression + 1/2*(standardDevExpr);
lower = meanExpression ;
options.solver = 'iMAT';
options.expressionRxns = expressionRxns;
options.threshold_lb = lower;
options.threshold_ub = upper;
options.runtime = 10000000;
modelPlease = createTissueSpecificModel(modelControl, options)
% iMAT (modelControl, expressionRxns, lower, upper)