-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLMM_CV_long.qmd
319 lines (259 loc) · 9.14 KB
/
LMM_CV_long.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
---
title: "Luisa M. Mimmi"
author:
firstname: Luisa M.
lastname: Mimmi
address: "Italian citizen | Green card holder"
position: "Economist | Policy Analyst | Freelance consultant"
contacts:
- icon: fa envelope
text: lmm76@georgetown.edu
url: "mailto:lmm76@georgetown.edu"
- icon: assets/icon/bi-house-fill.svg
text: luisamimmi.org
url: https://luisamimmi.org
# - icon: fa brands orcid
# text: 0000-0002-2244-8282
# url: https://orcid.org/0000-0002-2244-8282
# - icon: fa brands x-twitter
# text: Lulliter
# url: https://x.com/Lulliter
- icon: fa brands linkedin
text: Luisa M. Mimmi
url: https://www.linkedin.com/in/luisa-m-mimmi
# - icon: assets/icon/fa-google-scholar.svg
# text: Luisa M. Mimmi
# url: https://scholar.google.com/citations?user=OBYla5gAAAAJ&hl=en&oi=ao
# - icon: fa brands researchgate
# text: Luisa M. Mimmi
# url: https://www.researchgate.net/profile/Luisa-Mimmi
- icon: fa brands github
text: lulliter
url: https://github.com/lulliter
style:
color-accent: 7c1c2d #004B72 #516db0
format:
awesomecv-typst:
font-paths: ["assets/fonts/"]
keep-typ: true
execute:
echo: false
warning: false
---
```{r}
#| output: false
# fonte
# pckg https://kazuyanagimoto.com/typstcv/
# EXE https://kazuyanagimoto.com/cv/cv.pdf
# GH https://github.com/kazuyanagimoto/cv
# install.packages("typstcv", repos = "https://kazuyanagimoto.r-universe.dev")
library(typstcv)
library(dplyr)
library(stringr)
library(lubridate)
library(glue)
# Check locale for base::format().
Sys.getlocale("LC_TIME")
```
```{r func_date}
#| output: false
# --------- FUNCTION Define the function to process date columns
f_m_y_dates <- function(df, start_year_col, start_month_col, end_year_col, end_month_col) {
df %>%
# Combine month and year into a date, assuming the first day of the month
mutate(
# !!sym() converts the column names (passed as strings) to symbols, allowing them to be used dynamically inside mutate().
start_m_y = lubridate::make_date(!!sym(start_year_col), !!sym(start_month_col), 1),
end_m_y = lubridate::make_date(!!sym(end_year_col), !!sym(end_month_col), 1)
) %>%
# If NA in end_m_y, set the end date to today
mutate(end_m_y = if_else(is.na(end_m_y), lubridate::today(), end_m_y)) %>%
# Format the date as "month-year"
mutate(
start_m_y = base::format(start_m_y, "%b-%Y"),
end_m_y = base::format(end_m_y, "%b-%Y")
) %>%
# Create a resume entry as "month-year - month-year"
mutate(date = glue::glue("{start_m_y} - {end_m_y}"))
}
# ------- FUNCTION usage
# Apply the function to your dataframe
# processed_df <- f_m_y_dates(df, "start_year", "start_month", "end_year", "end_month")
```
## Work Experience
```{r}
work_temp <- readr::read_csv(here::here("data", "work.csv"), show_col_types = FALSE)
# call function to process dates
work <- work_temp %>%
f_m_y_dates("start_year", "start_month", "end_year", "end_month")
```
```{r}
#| output: asis
work %>%
#typstcv::format_date(start_m_y_end_m_y, replace_na = "Present" ) %>%
#format_date(replace_na = , end = "end", sort_by = "start") %>%
resume_entry(title = "title",
description = "org",
location = "where",
date = "date",
details = c("description_1", "description_2" )
#details = c("description_1", "description_2" )
)
```
\newpage
## Education
```{r}
educ_temp <- readr::read_csv(here::here("data", "edu.csv"), show_col_types = FALSE)
```
```{r}
#| output: asis
educ <- educ_temp %>%
f_m_y_dates("start_year", "start_month", "end_year", "end_month") %>%
resume_entry(title = "degree",
location = "inst",
date = "end_m_y",
description = "detail")
```
<!-- ## Professional Skills -->
<!-- • Strong critical thinking and **data analysis skills**, showcased in international contexts and across diverse sectors -->
<!-- • Demonstrated drive and resourcefulness in **leadership roles** for complex projects with multiple stakeholders -->
<!-- • Effective **communication skills**, proven by record of multilingual publications and public speaking for diverse audiences -->
## Skills
```{r}
#| output: asis
read.csv("data/skill.csv") |>
resume_entry(title = "area",
description = "skills")
```
## Peer-reviewed Publications
<!-- ### Peer-reviewed -->
```{r}
# Retrieve .bib and transform it into a data frame
peer_pub_temp <- RefManageR::ReadBib(
file = here::here("data", "Lula-MyPublication-Narrow.bib"),
.Encoding ="UTF-8") %>%
base::as.data.frame() %>%
# filter articles
dplyr::filter(bibtype == "Article") # %>%
#mutate(url = if_else(is.na(url), url_preprint, url) )
# Clean the date column and format it as "month-year"
peer_pub <- peer_pub_temp %>%
mutate(parsed_date = case_when(
is.na(date) | date == "" ~ NA_Date_, # Handle NA and empty strings
nchar(date) == 7 ~ ym(date),# For "yyyy-mm" format
nchar(date) == 10 ~ ymd(date),# For "yyyy-mm-dd" format
TRUE ~ NA_Date_)) %>%
dplyr::arrange(desc(parsed_date)) %>%
# Format the parsed date as "month-year"
mutate(month_year = if_else(is.na(parsed_date), NA_character_, base::format(parsed_date, "%b-%Y"))) %>%
# Apply the function to clean the "{{" and "}}" symbols from "title" and "author" columns
mutate(clean_title = gsub("\\{\\{", "", title), # Remove "{{"
clean_title = gsub("\\}\\}", "", clean_title)) # Remove "}}"
```
```{r}
#| output: asis
peer_pub |>
resume_entry(title = "clean_title",
description = "author",
location = "journaltitle",
date = "month_year" ,
details = "url")
```
## Other Publications
<br><br>
See complete list on [**Google Scholar profile**](https://scholar.google.com/citations?user=OBYla5gAAAAJ&hl=en&oi=ao)
<!-- ### Blog posts -->
<!-- ```{r} -->
<!-- # filter blogs -->
<!-- lula_blog <- RefManageR::ReadBib( -->
<!-- file = here::here("data", "Lula-MyPublication-Narrow.bib"), -->
<!-- .Encoding ="UTF-8") %>% -->
<!-- as.data.frame() %>% -->
<!-- dplyr::filter(bibtype == "Online") %>% -->
<!-- # Apply the function to clean the "{{" and "}}" symbols from "title" and "author" columns -->
<!-- mutate(clean_title = gsub("\\{\\{", "", title), # Remove "{{" -->
<!-- clean_title = gsub("\\}\\}", "", clean_title)) # Remove "}}" -->
<!-- ``` -->
<!-- ```{r} -->
<!-- #| output: asis -->
<!-- lula_blog |> -->
<!-- resume_entry(title = "clean_title", -->
<!-- location = "type", -->
<!-- description = "author", -->
<!-- date = "date", -->
<!-- details = "url") -->
<!-- ``` -->
\newpage
## Conferences and Talks
```{r}
# filter recent and....
talks_temp <- RefManageR::ReadBib(
file = here::here("data", "Lula-MyTalks.bib"),
.Encoding ="UTF-8") %>%
as.data.frame() %>%
# Keep only portion of string before "/" in the "date" column [2018-09-05/2018-09-06]
mutate(date = stringr::str_extract(date, pattern = "^[^/]+")) %>%
# Clean the date column and format it as "month-year"
mutate(parsed_date = case_when(
is.na(date) | date == "" ~ NA_Date_, # Handle NA and empty strings
nchar(date) == 7 ~ ym(date),# For "yyyy-mm" format
nchar(date) == 10 ~ ymd(date),# For "yyyy-mm-dd" format
TRUE ~ NA_Date_)) %>%
relocate(parsed_date, .after = date) %>%
dplyr::arrange(desc(parsed_date)) %>%
# Format the parsed date as "month-year"
mutate(month_year = if_else(is.na(parsed_date), NA_character_, base::format(parsed_date, "%b-%Y"))) %>%
relocate(month_year, .after = date) %>%
mutate(year = stringr::str_extract(date,pattern = "^.{1,4}"))
# filter 2020 and after & use `month_year` for date
talks <- talks_temp %>%
dplyr::filter(year >2015 & type != "Invited Talk") %>%
#mutate(url = if_else(is.na(url), url_preprint, url) ) %>%
# Apply the function to clean the "{{" and "}}" symbols from "title" and "author" columns
mutate(clean_title = gsub("\\{\\{", "", title), # Remove "{{"
clean_title = gsub("\\}\\}", "", clean_title), # Remove "}}"
clean_eventtitle = gsub("\\{\\{", "", eventtitle), # Remove "{{"
clean_eventtitle = gsub("\\}\\}", "", clean_eventtitle) # Remove "}}"
)
```
```{r}
#| output: asis
talks %>%
resume_entry(title = "clean_title",
date = "month_year",
description = "clean_eventtitle",
location = "venue")
```
## Illustrative Data Science Projects
```{r}
proj_temp <- readr::read_csv(here::here("data", "projects.csv"), show_col_types = FALSE)
```
```{r}
#| output: asis
# "area" "year" "accomplishment" "where" "link"
proj <- proj_temp %>%
as_tibble() %>%
mutate(
link_typst = str_replace_all(
link,
"\\\\href\\{([^}]+)\\}\\{([^}]+)\\}",
"[\\2](\\1)"
)) %>%
slice(c(1, 2, 5)) %>%
resume_entry(title = "area",
date = "year",
description = "accomplishment",
location = "where",
details = c("link_typst"))
```
```{=typst}
#box(height: 15%) // #box(height: 60pt)
```
<!-- quarto typst-->
::: {.block fill=luma(221) inset="8pt" radius="4pt"}
<!-- raw typst block -->
```{=typst}
#set text(size: 8pt, weight: "medium", fill: rgb("#85144b"))
I hereby authorize the processing of my personal data in accordance with GDPR (Regulation EU 2016/679) for recruitment purposes.
```
:::