-
Notifications
You must be signed in to change notification settings - Fork 2
/
Mnet.py
269 lines (208 loc) · 9.01 KB
/
Mnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Conv2d, Parameter, Softmax
from lib.swin_transformer import SwinTransformer
'''
First Stage
Mnet = Initial Feature Extraction Subnet
'''
class Mnet(nn.Module):
def __init__(self):
super(Mnet, self).__init__()
self.swin1 = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32])
self.ReLU = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
self.MSD1_3v = MSD(512, 512,not_top=False)
self.MSD1_2v = MSD(256, 256)
self.MSD1_1v = MSD(128, 128)
self.MSD2_2v = MSD(256, 256,not_top=False)
self.MSD2_1v = MSD(128, 128)
self.MSD3_1v = MSD(128, 128,not_top=False)
self.final_3v = nn.Sequential(
Conv(128, 64, 3, bn=True, relu=True),
Conv(64, 1, 1, bn=False, relu=False)
)
self.final_2v = nn.Sequential(
Conv(128, 64, 3, bn=True, relu=True),
Conv(64, 1, 1, bn=False, relu=False)
)
self.final_1v = nn.Sequential(
Conv(128, 64, 3, bn=True, relu=True),
Conv(64, 1, 1, bn=False, relu=False)
)
self.MSD1_3d = MSD(512, 512, not_top=False)
self.MSD1_2d = MSD(256, 256)
self.MSD1_1d = MSD(128, 128)
self.MSD2_2d = MSD(256, 256, not_top=False)
self.MSD2_1d = MSD(128, 128)
self.MSD3_1d = MSD(128, 128, not_top=False)
self.final_3d = nn.Sequential(
Conv(128, 64, 3, bn=True, relu=True),
Conv(64, 1, 1, bn=False, relu=False)
)
self.final_2d = nn.Sequential(
Conv(128, 64, 3, bn=True, relu=True),
Conv(64, 1, 1, bn=False, relu=False)
)
self.final_1d = nn.Sequential(
Conv(128, 64, 3, bn=True, relu=True),
Conv(64, 1, 1, bn=False, relu=False)
)
self.MSD1_3t = MSD(512, 512, not_top=False)
self.MSD1_2t = MSD(256, 256)
self.MSD1_1t = MSD(128, 128)
self.MSD2_2t = MSD(256, 256, not_top=False)
self.MSD2_1t = MSD(128, 128)
self.MSD3_1t = MSD(128, 128, not_top=False)
self.final_3t = nn.Sequential(
Conv(128, 64, 3, bn=True, relu=True),
Conv(64, 1, 1, bn=False, relu=False)
)
self.final_2t = nn.Sequential(
Conv(128, 64, 3, bn=True, relu=True),
Conv(64, 1, 1, bn=False, relu=False)
)
self.final_1t = nn.Sequential(
Conv(128, 64, 3, bn=True, relu=True),
Conv(64, 1, 1, bn=False, relu=False)
)
self.up2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.up4 = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=True)
self.up8 = nn.Upsample(scale_factor=8, mode='bilinear', align_corners=True)
self.up16 = nn.Upsample(scale_factor=16, mode='bilinear', align_corners=True)
def forward(self, rgb, t, d):
score_list_t, score_PE = self.swin1(t)
score_list_rgb, score_PE = self.swin1(rgb)
score_list_d, score_PE = self.swin1(d)
#V Branch
x1_v = score_list_rgb[0]
x2_v = score_list_rgb[1]
x3_v = score_list_rgb[2]
x4_v = score_list_rgb[3]
#First column of MSF modules
x1_3v = self.MSD1_3v(x3_v,x4_v,x4_v)
x1_2v = self.MSD1_2v(x2_v,x3_v,x1_3v)
x1_1v = self.MSD1_1v(x1_v,x2_v,x1_2v)
#Second column of MSF modules
x2_2v = self.MSD2_2v(x1_2v,x1_3v,x1_3v)
x2_1v = self.MSD2_1v(x1_1v,x1_2v,x2_2v)
#Third column of MSF modules
x3_1v = self.MSD3_1v(x2_1v,x2_2v,x2_2v)
x1_1v_pred = self.final_1v(x1_1v)
x2_1v_pred = self.final_2v(x2_1v)
x3_1v_pred = self.final_3v(x3_1v)
x1e_pred = self.up4(x1_1v_pred)
x2e_pred = self.up4(x2_1v_pred)
x3e_pred = self.up4(x3_1v_pred)
#T branch
x1_t = score_list_t[0]
x2_t = score_list_t[1]
x3_t = score_list_t[2]
x4_t = score_list_t[3]
x1_3t = self.MSD1_3t(x3_t, x4_t, x4_t)
x1_2t = self.MSD1_2t(x2_t, x3_t, x1_3t)
x1_1t = self.MSD1_1t(x1_t, x2_t, x1_2t)
x2_2t = self.MSD2_2t(x1_2t, x1_3t, x1_3t)
x2_1t = self.MSD2_1t(x1_1t, x1_2t, x2_2t)
x3_1t = self.MSD3_1t(x2_1t, x2_2t, x2_2t)
x1_1t_pred = self.final_1t(x1_1t)
x2_1t_pred = self.final_2t(x2_1t)
x3_1t_pred = self.final_3t(x3_1t)
x1e_pred_t = self.up4(x1_1t_pred)
x2e_pred_t = self.up4(x2_1t_pred)
x3e_pred_t = self.up4(x3_1t_pred)
#D branch
x1_d = score_list_d[0]
x2_d = score_list_d[1]
x3_d = score_list_d[2]
x4_d = score_list_d[3]
x1_3d = self.MSD1_3d(x3_d, x4_d, x4_d)
x1_2d = self.MSD1_2d(x2_d, x3_d, x1_3d)
x1_1d = self.MSD1_1d(x1_d, x2_d, x1_2d)
x2_2d = self.MSD2_2d(x1_2d, x1_3d, x1_3d)
x2_1d = self.MSD2_1d(x1_1d, x1_2d, x2_2d)
x3_1d = self.MSD3_1d(x2_1d, x2_2d, x2_2d)
x1_1d_pred = self.final_1d(x1_1d)
x2_1d_pred = self.final_2d(x2_1d)
x3_1d_pred = self.final_3d(x3_1d)
x1e_pred_d = self.up4(x1_1d_pred)
x2e_pred_d = self.up4(x2_1d_pred)
x3e_pred_d = self.up4(x3_1d_pred)
#First step of generating PGT
x1_vd = self.sigmoid((x1e_pred + x1e_pred_d)/2)
PGTT_P = self.ReLU(self.sigmoid(x1e_pred_t) - x1_vd)
PGTT_N = x1_vd * self.sigmoid(x1e_pred_t)
x1_vt = self.sigmoid((x1e_pred + x1e_pred_t)/2)
PGTD_P = self.ReLU(self.sigmoid(x1e_pred_d) - x1_vt)
PGTD_N = x1_vt * self.sigmoid(x1e_pred_d)
return x3e_pred, x2e_pred, x1e_pred, x3e_pred_t, x2e_pred_t, x1e_pred_t, x3e_pred_d, x2e_pred_d, x1e_pred_d,PGTD_P,PGTD_N,PGTT_P,PGTT_N
def load_pretrained_model(self):
self.swin1.load_state_dict(torch.load('./swin_base_patch4_window12_384_22k.pth')['model'],strict=False)
print('loading pretrained model success!')
class Conv(nn.Module):
def __init__(self, inp_dim, out_dim, kernel_size=3, stride=1, bn=False, relu=True, bias=True):
super(Conv, self).__init__()
self.inp_dim = inp_dim
self.conv = nn.Conv2d(inp_dim, out_dim, kernel_size, stride, padding=(kernel_size-1)//2, bias=bias)
self.relu = None
self.bn = None
if relu:
self.relu = nn.ReLU(inplace=True)
if bn:
self.bn = nn.BatchNorm2d(out_dim)
def forward(self, x):
assert x.size()[1] == self.inp_dim, "{} {}".format(x.size()[1], self.inp_dim)
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class convbnrelu(nn.Module):
def __init__(self, in_channel, out_channel, k=3, s=1, p=1, g=1, d=1, bias=False, bn=True, relu=True):
super(convbnrelu, self).__init__()
conv = [nn.Conv2d(in_channel, out_channel, k, s, p, dilation=d, groups=g, bias=bias)]
if bn:
conv.append(nn.BatchNorm2d(out_channel))
if relu:
conv.append(nn.ReLU(inplace=True))
self.conv = nn.Sequential(*conv)
def forward(self, x):
return self.conv(x)
class DSConv(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size=3, stride=1, padding=0,dilation=1, relu=True):
super(DSConv, self).__init__()
self.conv = nn.Sequential(
convbnrelu(in_channel, in_channel, k=kernel_size, s=stride, p=padding, d=dilation, g=in_channel),
convbnrelu(in_channel, out_channel, k=1, s=1, p=0, relu=relu)
)
def forward(self, x):
return self.conv(x)
class MSD(nn.Module):
def __init__(self, in_channel, out_channel, not_top=True):
super(MSD, self).__init__()
self.not_top = not_top
self.conv1x1 = Conv(in_channel, out_channel, 1, 1)
self.conv_Fn = Conv(in_channel*2, out_channel, 1, 1)
self.DSConv3x3 = DSConv(in_channel, out_channel, kernel_size=3,stride=1, padding=1)
self.DSConv5x5 = DSConv(in_channel, out_channel, kernel_size=5,stride=1, padding=2)
self.sigmoid = nn.Sigmoid()
self.up2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv3x3 = Conv(out_channel, out_channel, 3, 1)
if not_top:
self.conv_Fp = Conv(in_channel*2, out_channel, 1, 1)
def forward(self, F,F_n,F_p):
F_n = self.up2(self.conv_Fn(F_n))
F_f = F + F_n
F_f1 = self.conv1x1(F_f)
F_f2 = self.DSConv3x3(F_f)
F_s1 = F_f1 * F_f2
F_f3 = self.DSConv5x5(F_f)
F_s2 = F_s1 * F_f3
if self.not_top:
F_p = self.up2(self.conv_Fp(F_p))
F_sout = self.conv3x3(F_s2 + F_p)
else:
F_sout = self.conv3x3(F_s2)
return F_sout