-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathepq_sparse.py
262 lines (231 loc) · 10.8 KB
/
epq_sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import os.path as osp
import sys
import argparse
from quantization.sq.utils import quant_framework
import logging
import torch
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid
import torch_geometric.transforms as T
from quantization.utils import QParam, Layer_Qparam, sizeTracker, result_container, fetchAssign
from benchmark import GCN, GAT
from numpy import mean
import time
def argParse():
parser = argparse.ArgumentParser()
parser.add_argument('--use_gdc', action='store_true',
help='Use GDC preprocessing.')
parser.add_argument('--dataset', type=str, default='Cora')
parser.add_argument('--model', type=str, default='GCN')
parser.add_argument('--lr', type=float, default=0.005)
parser.add_argument('--wd', type=float, default=5e-4)
parser.add_argument('--hidden', type=int, default=16)
parser.add_argument('--nheads', type=int, default=8)
parser.add_argument('--epoch', type=int, default=400)
parser.add_argument('--nruns', type=int, default=1, help='number of independent runs')
parser.add_argument('--block_size', type=int, default=22)
parser.add_argument('--ncents', type=int, default=64,
help='the upper limit of learned clusters and the upper limit of learned clusters for each batch if mini_batch is true')
parser.add_argument('--try_cluster', type=int, default=15,
help='number of attempts to find more centroids')
parser.add_argument('--n_iter', type=int, default=10,
help='number of iteration for cluster')
parser.add_argument('--mini_batch', action="store_true",
help='apply batch method')
parser.add_argument('--batch_size', type=int, default=1024,
help='number of nodes in each batch')
parser.add_argument('--path', type=str, default=f'./pq_data/')
parser.add_argument('--pqnt', action="store_true", #default=True,
help='apply EPQ on input data')
parser.add_argument('--act_qnt', action="store_true", #default=True,
help='apply SQ on input data')
parser.add_argument('--wt_qnt', action="store_true", #default=True,
help='apply SQ on weight')
parser.add_argument('--bits', type=tuple, default=(8,8),
help='quantization bits of each layer')
parser.add_argument('--wf', action="store_true", #default=True,
help='write result to file')
parser.add_argument('--pretrained', action="store_true", #default=True,
help='use pretrained model')
parser.add_argument('--inf_time', action="store_true", #default=True,
help='record inference time')
parser.add_argument('--print_result', action="store_true", #default=True,
help='')
parser.add_argument('--fast', action="store_true", #default=True,
help='no need to download datasets, use data already quantized by EPQ.')
parser.add_argument('--f', type=str, default='result.txt', help='path of result file')
# parser.add_argument('--verbose', type=str, default='INFO')
args = parser.parse_args()
print(args)
return args
def dataProcess(dataset, fast=False, use_gdc=False):
if fast:
data = torch.load(f'./pq_data/{dataset.lower()}/data.pth')
dataset = None
else:
if dataset == 'Reddit':
from torch_geometric.datasets import Reddit
path = osp.join(osp.dirname(osp.realpath(__file__)), './', 'data', 'Reddit')
dataset = Reddit(path)
elif dataset == 'Amazon2M':
from ogb.nodeproppred import PygNodePropPredDataset
dataset = PygNodePropPredDataset(name = "ogbn-products", root = './data/')
else:
from torch_geometric.datasets import Planetoid
path = osp.join(osp.dirname(osp.realpath(__file__)), './', 'data', dataset)
dataset = Planetoid(path, dataset, transform=T.NormalizeFeatures())
data = dataset[0]
if use_gdc:
gdc = T.GDC(self_loop_weight=1, normalization_in='sym',
normalization_out='col',
diffusion_kwargs=dict(method='ppr', alpha=0.05),
sparsification_kwargs=dict(method='topk', k=128,
dim=0), exact=True)
data = gdc(data)
return data, dataset
def train(data,model,optimizer):
model.train()
optimizer.zero_grad()
F.nll_loss(model(data)[data.train_mask], data.y[data.train_mask]).backward()
optimizer.step()
@torch.no_grad()
def test(data,model, time_record=False):
if time_record:
start_time = time.time()
model.eval()
logits, accs = model(data), []
if time_record:
end_time = time.time()
elaps_time = end_time - start_time
print(f'Time for inference is {elaps_time}\n')
for _, mask in data('train_mask', 'val_mask', 'test_mask'):
pred = logits[mask].max(1)[1]
acc = pred.eq(data.y[mask]).sum().item() / mask.sum().item()
accs.append(acc)
return accs
if __name__ == "__main__":
logger = logging.getLogger("")
logger.setLevel(logging.DEBUG) #DEBUG < INFO < WARNING < ERROR < CRITICAL
args = argParse()
device = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu')
#device = torch.device('cpu')
block_size = 4
n_cents = 64
data, dataset = dataProcess(args.dataset, args.fast, args.use_gdc)
num_classes = data.num_classes if args.fast else dataset.num_classes
data_size = data.size if args.fast else data.x.size()
if args.fast:
data.x = torch.empty(data_size)
data = data.to(device)
test_acc_list = []
test_lo = test_hi = test_mean = 0
for i in range(args.nruns):
if args.model == 'GCN':
model = GCN(data_size[1], args.hidden, num_classes).to(device)
optimizer = torch.optim.Adam([
dict(params=model.conv1.parameters(), weight_decay=args.wd),
dict(params=model.conv2.parameters(), weight_decay=0)
], lr=args.lr) # Only perform weight-decay on first convolution.
elif args.model == 'GAT':
model = GAT(data_size[1], num_classes).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
else:
logger.error(f'{model} is not support yet.')
sys.exit(0)
if args.pretrained:
model.load_state_dict(torch.load('./parameter.pkl'))
save = bool(0)
load = not save
wt_qnt = args.wt_qnt
act_qnt = args.act_qnt
pqnt = args.fast or args.pqnt
layer0_input_qparam = QParam(
pqnt=pqnt,
n_centroids=args.ncents,
block_size=args.block_size,
batch_size=args.batch_size,
mini_batch=args.mini_batch,
save=save,
load=load,
path=osp.join(args.path, args.dataset.lower()),
)
layer0_act_qparam = QParam(
sqnt=act_qnt,
bits=args.bits,
p=0.3,
)
layer0_wt_qparam = QParam(
sqnt=wt_qnt,
bits=args.bits,
p=0.3,
)
layer0_qparam = Layer_Qparam(input_qparam=layer0_input_qparam, wt_qparam=layer0_wt_qparam, act_qparam=layer0_act_qparam)
layer1_input_qparam = QParam()
layer1_act_qparam = QParam(
sqnt=act_qnt,
bits=args.bits,
p=0.3,
)
layer1_wt_qparam = QParam(
sqnt=wt_qnt,
bits=args.bits,
p=0.3,
)
layer1_qparam = Layer_Qparam(input_qparam=layer1_input_qparam, wt_qparam=layer1_wt_qparam, act_qparam=layer1_act_qparam)
qnt_param = {'layer_0':layer0_qparam, 'layer_1':layer1_qparam}
quant_framework(model, **qnt_param)
model = model.to(device)
best_val_acc = test_acc = best_test_acc = 0
if not args.pretrained:
for epoch in range(1, args.epoch+1):
train(data, model, optimizer)
train_acc, val_acc, tmp_test_acc = test(data, model)
if val_acc > best_val_acc:
best_val_acc = val_acc
test_acc = tmp_test_acc
if test_acc > best_test_acc:
best_test_acc = test_acc
log = 'Epoch: {:03d}, Train: {:.4f}, Val: {:.4f}, Test: {:.4f}'
if epoch % 50 == 0:
print(log.format(epoch, train_acc, best_val_acc, best_test_acc))
test_acc_list.append(best_test_acc)
else:
train_acc, val_acc, tmp_test_acc = test(data, model, args.inf_time)
log = 'Train: {:.4f}, Val: {:.4f}, Test: {:.4f}'
print(log.format(train_acc, val_acc, tmp_test_acc))
if args.print_result:
if not args.pretrained:
test_mean = mean(test_acc_list)
test_lo = test_mean - min(test_acc_list)
test_hi = max(test_acc_list) - test_mean
else:
test_mean = tmp_test_acc
test_lo = test_hi = 0
# print(f'test result: mean: {test_mean:.4f}, lo: {test_lo:.4f}, hi: {test_hi:.4f}\n')
if args.pqnt or args.fast:
assignments, centroids = fetchAssign(layer0_input_qparam, data_size[0], device)
else:
assignments = torch.empty(1)
if args.model == 'GCN':
input_sizes = (data_size, (data_size[0], args.hidden))
model_param = {'model':'GCN', 'n_feature':data_size[1], 'n_hid':args.hidden,
'n_class':num_classes, 'mean':test_mean,
'lo':test_lo, 'hi':test_hi,
'CSR':True, 'assignments':assignments.cpu()}
elif args.model == 'GAT':
input_sizes = (data_size, (data_size[0], args.hidden*args.nheads))
model_param = {'model':'GAT', 'n_feature':data_size[1],
'n_hid':args.hidden, 'n_heads':args.nheads, 'n_class':num_classes,
'in_channel_num':1, 'mean':test_mean, 'lo':test_lo, 'hi':test_hi,
'CSR':True, 'assignments':assignments.cpu()}
cps_res, acc_res = result_container(qnt_param, *input_sizes, **model_param)
if args.wf:
f=open(args.f, 'w+')
f.write(f'\nblocksize:{args.block_size}, dataset:{args.dataset}, model: {args.model}\n')
f.write(cps_res.get_string())
f.write(acc_res.get_string())
f.close()
if not args.pretrained:
torch.save(model.state_dict(), 'parameter.pkl')