-
Notifications
You must be signed in to change notification settings - Fork 23
/
flyingthings3d.py
91 lines (73 loc) · 3.69 KB
/
flyingthings3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import cv2
import numpy as np
import torch.utils.data
from utils import load_flow_png
from augmentation import joint_augmentation
class FlyingThings3D(torch.utils.data.Dataset):
def __init__(self, cfgs):
assert os.path.isdir(cfgs.root_dir)
self.root_dir = str(cfgs.root_dir)
self.split = str(cfgs.split)
self.split_dir = os.path.join(self.root_dir, self.split)
self.cfgs = cfgs
self.indices = []
for filename in os.listdir(os.path.join(self.root_dir, self.split, 'flow_2d')):
self.indices.append(int(filename.split('.')[0]))
self.indices = sorted(self.indices)
def __len__(self):
return len(self.indices)
def __getitem__(self, i):
if not self.cfgs.augmentation.enabled:
np.random.seed(0)
idx1 = self.indices[i]
idx2 = idx1 + 1
data_dict = {'index': idx1}
# camera intrinsics
f, cx, cy = 1050, 479.5, 269.5
# load 2D data
if self.cfgs.pass_name == 'cleanfinal' and self.cfgs.augmentation.enabled:
pass_name = 'clean' if np.random.randint(2) == 0 else 'final'
else:
pass_name = self.cfgs.pass_name
image1 = cv2.imread(os.path.join(self.split_dir, 'image_%s' % pass_name, '%07d.png' % idx1))[..., ::-1]
image2 = cv2.imread(os.path.join(self.split_dir, 'image_%s' % pass_name, '%07d.png' % idx2))[..., ::-1]
flow_2d, flow_mask_2d = load_flow_png(os.path.join(self.split_dir, 'flow_2d', '%07d.png' % idx1))
# load 3D data
pc_dict = np.load(os.path.join(self.split_dir, 'pc', '%07d.npz' % idx1))
flow_3d = np.load(os.path.join(self.split_dir, 'flow_3d', '%07d.npy' % idx1))
pc1, pc2 = pc_dict['pc1'], pc_dict['pc2']
# load occlusion mask (only for evaluation)
if os.path.exists(os.path.join(self.split_dir, 'occ_mask_3d')):
occ_mask_3d = np.load(os.path.join(self.split_dir, 'occ_mask_3d', '%07d.npy' % idx1))
occ_mask_3d = np.unpackbits(occ_mask_3d, count=len(pc1))
else:
occ_mask_3d = np.zeros(len(pc1), dtype=np.bool)
# ignore fast moving objects
flow_mask_2d = np.logical_and(flow_mask_2d, np.linalg.norm(flow_2d, axis=-1) < 250.0)
flow_2d = np.concatenate([flow_2d, flow_mask_2d[..., None].astype(np.float32)], axis=2)
# data augmentation
while True:
try:
results = joint_augmentation(
image1, image2, pc1, pc2, flow_2d, flow_3d, f, cx, cy, self.cfgs.augmentation
)
except AssertionError:
continue
image1, image2, pc1, pc2, flow_2d, flow_3d, f, cx, cy = results
break
if self.cfgs.augmentation.enabled or pc1.shape[0] != self.cfgs.n_points:
indices1 = np.random.choice(pc1.shape[0], size=self.cfgs.n_points, replace=pc1.shape[0] < self.cfgs.n_points)
indices2 = np.random.choice(pc2.shape[0], size=self.cfgs.n_points, replace=pc2.shape[0] < self.cfgs.n_points)
pc1, pc2, flow_3d, occ_mask_3d = pc1[indices1], pc2[indices2], flow_3d[indices1], occ_mask_3d[indices1]
if self.cfgs.with_pc:
pc_pair = np.concatenate([pc1, pc2], axis=1)
data_dict['pcs'] = pc_pair.transpose()
data_dict['flow_3d'] = flow_3d.transpose()
data_dict['intrinsics'] = np.float32([f, cx, cy])
data_dict['occ_mask_3d'] = occ_mask_3d
if self.cfgs.with_image:
image_pair = np.concatenate([image1, image2], axis=-1)
data_dict['images'] = image_pair.transpose([2, 0, 1])
data_dict['flow_2d'] = flow_2d.transpose([2, 0, 1])
return data_dict