-
Notifications
You must be signed in to change notification settings - Fork 24
/
ray_metrics.py
69 lines (54 loc) · 2.36 KB
/
ray_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import glob
import mmcv
import argparse
import numpy as np
import torch
from torch.utils.data import DataLoader
from loaders.ray_metrics import main_rayiou
from loaders.ego_pose_dataset import EgoPoseDataset
from configs.r50_nuimg_704x256_8f import occ_class_names as occ3d_class_names
from configs.r50_nuimg_704x256_8f_openocc import occ_class_names as openocc_class_names
def main(args):
data_infos = mmcv.load(os.path.join(args.data_root, 'nuscenes_infos_val.pkl'))['infos']
gt_filepaths = sorted(glob.glob(os.path.join(args.data_root, args.data_type, '*/*/*.npz')))
# retrieve scene_name
token2scene = {}
for gt_path in gt_filepaths:
token = gt_path.split('/')[-2]
scene_name = gt_path.split('/')[-3]
token2scene[token] = scene_name
for i in range(len(data_infos)):
scene_name = token2scene[data_infos[i]['token']]
data_infos[i]['scene_name'] = scene_name
lidar_origins = []
occ_gts = []
occ_preds = []
for idx, batch in enumerate(DataLoader(EgoPoseDataset(data_infos), num_workers=8)):
output_origin = batch[1]
info = data_infos[idx]
occ_path = os.path.join(args.data_root, args.data_type, info['scene_name'], info['token'], 'labels.npz')
occ_gt = np.load(occ_path, allow_pickle=True)['semantics']
occ_gt = np.reshape(occ_gt, [200, 200, 16]).astype(np.uint8)
occ_path = os.path.join(args.pred_dir, info['token'] + '.npz')
occ_pred = np.load(occ_path, allow_pickle=True)['pred']
occ_pred = np.reshape(occ_pred, [200, 200, 16]).astype(np.uint8)
lidar_origins.append(output_origin)
occ_gts.append(occ_gt)
occ_preds.append(occ_pred)
if args.data_type == 'occ3d':
occ_class_names = occ3d_class_names
elif args.data_type == 'openocc_v2':
occ_class_names = openocc_class_names
else:
raise ValueError
print(main_rayiou(occ_preds, occ_gts, lidar_origins, occ_class_names=occ_class_names))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data-root", type=str, default='data/nuscenes')
parser.add_argument("--pred-dir", type=str)
parser.add_argument("--data-type", type=str, choices=['occ3d', 'openocc_v2'], default='occ3d')
args = parser.parse_args()
torch.random.manual_seed(0)
np.random.seed(0)
main(args)