-
Notifications
You must be signed in to change notification settings - Fork 22
/
pair_e3gnn.cpp
400 lines (333 loc) · 12.1 KB
/
pair_e3gnn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://lammps.sandia.gov/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Yutack Park (SNU)
------------------------------------------------------------------------- */
#include <ATen/ops/from_blob.h>
#include <c10/core/Scalar.h>
#include <c10/core/TensorOptions.h>
#include <string>
#include <torch/script.h>
#include <torch/torch.h>
#include "atom.h"
#include "domain.h"
#include "error.h"
#include "force.h"
#include "memory.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "neighbor.h"
#include "pair_e3gnn.h"
using namespace LAMMPS_NS;
#define INTEGER_TYPE torch::TensorOptions().dtype(torch::kInt64)
#define FLOAT_TYPE torch::TensorOptions().dtype(torch::kFloat)
PairE3GNN::PairE3GNN(LAMMPS *lmp) : Pair(lmp) {
// constructor
const char *print_flag = std::getenv("SEVENN_PRINT_INFO");
if (print_flag)
print_info = true;
std::string device_name;
if (torch::cuda::is_available()) {
device = torch::kCUDA;
device_name = "CUDA";
} else {
device = torch::kCPU;
device_name = "CPU";
}
if (lmp->logfile) {
fprintf(lmp->logfile, "PairE3GNN using device : %s\n", device_name.c_str());
}
}
PairE3GNN::~PairE3GNN() {
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
memory->destroy(map);
memory->destroy(elements);
}
}
void PairE3GNN::compute(int eflag, int vflag) {
// compute
/*
This compute function is ispired/modified from stress branch of pair-nequip
https://github.com/mir-group/pair_nequip
*/
if (eflag || vflag)
ev_setup(eflag, vflag);
else
evflag = vflag_fdotr = 0;
if (vflag_atom) {
error->all(FLERR, "atomic stress is not supported\n");
}
int nlocal = list->inum; // same as nlocal
int *ilist = list->ilist;
tagint *tag = atom->tag;
std::unordered_map<int, int> tag_map;
if (atom->tag_consecutive() == 0) {
for (int ii = 0; ii < nlocal; ii++) {
const int i = ilist[ii];
int itag = tag[i];
tag_map[itag] = ii+1;
// printf("MODIFY setting %i => %i \n",itag, tag_map[itag] );
}
} else {
//Ordered which mappling required
for (int ii = 0; ii < nlocal; ii++) {
const int itag = ilist[ii]+1;
tag_map[itag] = ii+1;
// printf("normal setting %i => %i \n",itag, tag_map[itag] );
}
}
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
long num_atoms[1] = {nlocal};
int tag2i[nlocal];
int *numneigh = list->numneigh; // j loop cond
int **firstneigh = list->firstneigh; // j list
int bound;
if (this->nedges_bound == -1) {
bound = std::accumulate(numneigh, numneigh + nlocal, 0);
} else {
bound = this->nedges_bound;
}
const int nedges_upper_bound = bound;
float cell[3][3];
cell[0][0] = domain->boxhi[0] - domain->boxlo[0];
cell[0][1] = 0.0;
cell[0][2] = 0.0;
cell[1][0] = domain->xy;
cell[1][1] = domain->boxhi[1] - domain->boxlo[1];
cell[1][2] = 0.0;
cell[2][0] = domain->xz;
cell[2][1] = domain->yz;
cell[2][2] = domain->boxhi[2] - domain->boxlo[2];
torch::Tensor inp_cell = torch::from_blob(cell, {3, 3}, FLOAT_TYPE);
torch::Tensor inp_num_atoms = torch::from_blob(num_atoms, {1}, INTEGER_TYPE);
torch::Tensor inp_node_type = torch::zeros({nlocal}, INTEGER_TYPE);
torch::Tensor inp_pos = torch::zeros({nlocal, 3});
torch::Tensor inp_cell_volume =
torch::dot(inp_cell[0], torch::cross(inp_cell[1], inp_cell[2], 0));
float pbc_shift_tmp[nedges_upper_bound][3];
auto node_type = inp_node_type.accessor<long, 1>();
auto pos = inp_pos.accessor<float, 2>();
long edge_idx_src[nedges_upper_bound];
long edge_idx_dst[nedges_upper_bound];
int nedges = 0;
for (int ii = 0; ii < nlocal; ii++) {
const int i = ilist[ii];
int itag = tag_map[tag[i]];
tag2i[itag - 1] = i;
const int itype = type[i];
node_type[itag - 1] = map[itype];
pos[itag - 1][0] = x[i][0];
pos[itag - 1][1] = x[i][1];
pos[itag - 1][2] = x[i][2];
}
for (int ii = 0; ii < nlocal; ii++) {
const int i = ilist[ii];
int itag = tag_map[tag[i]];
const int *jlist = firstneigh[i];
const int jnum = numneigh[i];
for (int jj = 0; jj < jnum; jj++) {
int j = jlist[jj]; // atom over pbc is different atom
int jtag = tag_map[tag[j]]; // atom over pbs is same atom (it starts from 1)
j &= NEIGHMASK;
const int jtype = type[j];
const double delij[3] = {x[j][0] - x[i][0], x[j][1] - x[i][1],
x[j][2] - x[i][2]};
const double Rij =
delij[0] * delij[0] + delij[1] * delij[1] + delij[2] * delij[2];
if (Rij < cutoff_square) {
edge_idx_src[nedges] = itag - 1;
edge_idx_dst[nedges] = jtag - 1;
pbc_shift_tmp[nedges][0] = x[j][0] - pos[jtag - 1][0];
pbc_shift_tmp[nedges][1] = x[j][1] - pos[jtag - 1][1];
pbc_shift_tmp[nedges][2] = x[j][2] - pos[jtag - 1][2];
nedges++;
}
} // j loop end
} // i loop end
auto edge_idx_src_tensor =
torch::from_blob(edge_idx_src, {nedges}, INTEGER_TYPE);
auto edge_idx_dst_tensor =
torch::from_blob(edge_idx_dst, {nedges}, INTEGER_TYPE);
auto inp_edge_index =
torch::stack({edge_idx_src_tensor, edge_idx_dst_tensor});
// r' = r + {shift_tensor(integer vector of len 3)} @ cell_tensor
// shift_tensor = (cell_tensor)^-1^T @ (r' - r)
torch::Tensor cell_inv_tensor =
inp_cell.inverse().transpose(0, 1).unsqueeze(0).to(device);
torch::Tensor pbc_shift_tmp_tensor =
torch::from_blob(pbc_shift_tmp, {nedges, 3}, FLOAT_TYPE)
.view({nedges, 3, 1})
.to(device);
torch::Tensor inp_cell_shift =
torch::bmm(cell_inv_tensor.expand({nedges, 3, 3}), pbc_shift_tmp_tensor)
.view({nedges, 3});
inp_pos.set_requires_grad(true);
c10::Dict<std::string, torch::Tensor> input_dict;
input_dict.insert("x", inp_node_type.to(device));
input_dict.insert("pos", inp_pos.to(device));
input_dict.insert("edge_index", inp_edge_index.to(device));
input_dict.insert("num_atoms", inp_num_atoms.to(device));
input_dict.insert("cell_lattice_vectors", inp_cell.to(device));
input_dict.insert("cell_volume", inp_cell_volume.to(device));
input_dict.insert("pbc_shift", inp_cell_shift);
std::vector<torch::IValue> input(1, input_dict);
auto output = model.forward(input).toGenericDict();
torch::Tensor total_energy_tensor =
output.at("inferred_total_energy").toTensor().cpu();
torch::Tensor force_tensor = output.at("inferred_force").toTensor().cpu();
auto forces = force_tensor.accessor<float, 2>();
eng_vdwl += total_energy_tensor.item<float>();
for (int itag = 0; itag < nlocal; itag++) {
int i = tag2i[itag];
f[i][0] += forces[itag][0];
f[i][1] += forces[itag][1];
f[i][2] += forces[itag][2];
}
if (vflag) {
// more accurately, it is virial part of stress
torch::Tensor stress_tensor = output.at("inferred_stress").toTensor().cpu();
auto virial_stress_tensor = stress_tensor * inp_cell_volume;
// xy yz zx order in vasp (voigt is xx yy zz yz xz xy)
auto virial_stress = virial_stress_tensor.accessor<float, 1>();
virial[0] += virial_stress[0];
virial[1] += virial_stress[1];
virial[2] += virial_stress[2];
virial[3] += virial_stress[3];
virial[4] += virial_stress[5];
virial[5] += virial_stress[4];
}
if (eflag_atom) {
torch::Tensor atomic_energy_tensor =
output.at("atomic_energy").toTensor().cpu().squeeze();
auto atomic_energy = atomic_energy_tensor.accessor<float, 1>();
for (int itag = 0; itag < nlocal; itag++) {
int i = tag2i[itag];
eatom[i] += atomic_energy[itag];
}
}
// if it was the first MD step
if (this->nedges_bound == -1) {
this->nedges_bound = nedges * 1.2;
} // else if the nedges is too small, increase the bound
else if (nedges > this->nedges_bound / 1.2) {
this->nedges_bound = nedges * 1.2;
}
}
// allocate arrays (called from coeff)
void PairE3GNN::allocate() {
allocated = 1;
int n = atom->ntypes;
memory->create(setflag, n + 1, n + 1, "pair:setflag");
memory->create(cutsq, n + 1, n + 1, "pair:cutsq");
memory->create(map, n + 1, "pair:map");
}
// global settings for pair_style
void PairE3GNN::settings(int narg, char **arg) {
if (narg != 0) {
error->all(FLERR, "Illegal pair_style command");
}
}
void PairE3GNN::coeff(int narg, char **arg) {
if (allocated) {
error->all(FLERR, "pair_e3gnn coeff called twice");
}
allocate();
if (strcmp(arg[0], "*") != 0 || strcmp(arg[1], "*") != 0) {
error->all(FLERR,
"e3gnn: first and second input of pair_coeff should be '*'");
}
// expected input : pair_coeff * * pot.pth type_name1 type_name2 ...
std::unordered_map<std::string, std::string> meta_dict = {
{"chemical_symbols_to_index", ""},
{"cutoff", ""},
{"num_species", ""},
{"model_type", ""},
{"version", ""},
{"dtype", ""},
{"time", ""}};
// model loading from input
try {
model = torch::jit::load(std::string(arg[2]), device, meta_dict);
} catch (const c10::Error &e) {
error->all(FLERR, "error loading the model, check the path of the model");
}
// model = torch::jit::freeze(model); model is already freezed
torch::jit::setGraphExecutorOptimize(false);
torch::jit::FusionStrategy strategy;
// thing about dynamic recompile as tensor shape varies, this is default
// strategy = {{torch::jit::FusionBehavior::DYNAMIC, 3}};
strategy = {{torch::jit::FusionBehavior::STATIC, 0}};
torch::jit::setFusionStrategy(strategy);
cutoff = std::stod(meta_dict["cutoff"]);
cutoff_square = cutoff * cutoff;
if (meta_dict["model_type"].compare("E3_equivariant_model") != 0) {
error->all(FLERR, "given model type is not E3_equivariant_model");
}
std::string chem_str = meta_dict["chemical_symbols_to_index"];
int ntypes = atom->ntypes;
auto delim = " ";
char *tok = std::strtok(const_cast<char *>(chem_str.c_str()), delim);
std::vector<std::string> chem_vec;
while (tok != nullptr) {
chem_vec.push_back(std::string(tok));
tok = std::strtok(nullptr, delim);
}
bool found_flag = false;
for (int i = 3; i < narg; i++) {
found_flag = false;
for (int j = 0; j < chem_vec.size(); j++) {
if (chem_vec[j].compare(arg[i]) == 0) {
map[i - 2] = j;
found_flag = true;
fprintf(lmp->logfile, "Chemical specie '%s' is assigned to type %d\n",
arg[i], i - 2);
break;
}
}
if (!found_flag) {
error->all(FLERR, "Unknown chemical specie is given");
}
}
if (ntypes > narg - 3) {
error->all(FLERR, "Not enough chemical specie is given. Check pair_coeff "
"and types in your data/script");
}
for (int i = 1; i <= ntypes; i++) {
for (int j = 1; j <= ntypes; j++) {
if ((map[i] >= 0) && (map[j] >= 0)) {
setflag[i][j] = 1;
cutsq[i][j] = cutoff * cutoff;
}
}
}
if (lmp->logfile) {
fprintf(lmp->logfile, "from sevenn version '%s' ",
meta_dict["version"].c_str());
fprintf(lmp->logfile, "%s precision model trained at %s is loaded\n",
meta_dict["dtype"].c_str(), meta_dict["time"].c_str());
}
}
// init specific to this pair
void PairE3GNN::init_style() {
// Newton flag is irrelevant if use only one processor for simulation
/*
if (force->newton_pair == 0) {
error->all(FLERR, "Pair style nn requires newton pair on");
}
*/
// full neighbor list (this is many-body potential)
neighbor->add_request(this, NeighConst::REQ_FULL);
}
double PairE3GNN::init_one(int i, int j) { return cutoff; }