-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvits_wrap.py
340 lines (294 loc) · 13.9 KB
/
vits_wrap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# coding: utf-8
import os
import sys
import struct
import time
import numpy as np
import torch
from librosa import resample
from textparser import TextParser
from infer import EmoVITS
from version import __version__
def _genWavHeader(sampleNum, sampleRate=8000, bitNum=16):
wavHeadInfo = b'\x52\x49\x46\x46' # RIFF
wavHeadInfo += struct.pack('i', sampleNum * 2 + 44 - 8)
wavHeadInfo += b'\x57\x41\x56\x45\x66\x6D\x74\x20\x10\x00\x00\x00\x01\x00\x01\x00'
wavHeadInfo += struct.pack('i', sampleRate)
wavHeadInfo += struct.pack('i', sampleRate * bitNum // 8)
wavHeadInfo += struct.pack('H', bitNum // 8)
wavHeadInfo += struct.pack('H', bitNum)
wavHeadInfo += b'\x64\x61\x74\x61'
wavHeadInfo += struct.pack('i', sampleNum * 2)
return wavHeadInfo
class VITSWrap(object):
# global configuration
default_spkid = 1
default_volume = 1.0
default_speed = 1.0
default_pitch = 1.0
default_tail_silece = 0.0 # Second
def __init__(
self,
ckpt_path: str = None,
device: torch.device = None,
loglv: int = 0,
) -> None:
self.loglv = loglv
self.textparser = TextParser(loglv=loglv)
self.speecher = EmoVITS(ckpt_path, device=device)
try:
from fbandext import NeuralFBandExt
self.asv = NeuralFBandExt(device=device)
except:
self.asv = None
self.default_sampling_rate = self.speecher.sampling_rate
self.max_utt_length = self.textparser.max_utt_length
print('@@@@@@@@@@@@@@@@@@@@@@@@@@')
print(self.max_utt_length)
if self.loglv > 0:
func_name = f"{self.__class__.__name__}::{sys._getframe().f_code.co_name}"
sys.stderr.write(f"{func_name}: init Successful, version={__version__} !\n")
def update(self):
self.textparser.update()
self.speecher.update()
# empty cuda buffer
torch.cuda.empty_cache()
def _parse_input(self, inputs):
volume = float(inputs.get('volume', self.default_volume))
speed = float(inputs.get('speed', self.default_speed))
pitch = float(inputs.get('pitch', self.default_pitch))
sampling_rate = int(inputs.get('sampling_rate', self.default_sampling_rate))
tail_silence = float(inputs.get('tail_silence', self.default_tail_silece))
volume = max(0., min(1., volume))
speed = max(0.5, min(2., speed))
pitch = max(0.5, min(2., pitch))
sampling_rate = min(48000, max(8000, sampling_rate))
speed /= pitch
utt_id = inputs.get('id', str(time.time()).replace('.', '_'))
utt_text = inputs.get('text', '。')
spkid = int(inputs.get('spkid', self.default_spkid))
emotion = inputs.get('emotion')
return inputs, utt_id, utt_text, spkid, volume, speed, pitch, sampling_rate, tail_silence, emotion
def _handle_outputs(self, inputs, wav_bytes, sampling_rate, segment_info, time_used_frontend, time_used_backend, rtf):
outputs = inputs
outputs['wav'] = _genWavHeader(len(wav_bytes)//2, sampling_rate, 16) + wav_bytes
outputs['sr'] = sampling_rate
outputs['segment_info'] = segment_info
outputs['time_used_frontend'] = time_used_frontend * 1000 # ms
outputs['time_used_backend'] = time_used_backend * 1000 # ms
outputs['rtf'] = rtf
return outputs
def _split_utt_text(self, utt_id, utt_text):
if utt_text is None or utt_text == '':
utt_text = '。'
utt_text = utt_text.strip()
print('@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@')
print(utt_text)
print(len(utt_text))
if len(utt_text) <= self.max_utt_length:
return [utt_id], [utt_text]
center_pos = int(self.max_utt_length * 0.618)
max_length = self.max_utt_length
def find_nearest_center(texts):
if len(texts) < center_pos + 2: return len(texts)
if len(texts) >= center_pos + 2 and texts[center_pos:center_pos+2] in ['——', '……']:
return center_pos + 2
for _chr in ['。', '!', '!', '?', '?', ';', ';', ',']:
find_pos = texts[:center_pos][::-1].find(_chr)
if 0 <= find_pos < center_pos:
return center_pos - find_pos
find_pos = texts.find(_chr, center_pos)
if 0 <= find_pos < max_length:
return find_pos + len(_chr)
for _chr in ['.', ',', ':', ':']:
texts_reverse = texts[:center_pos][::-1]
cl = len(_chr)
find_pos = texts_reverse.find(_chr)
if (0 <= find_pos < center_pos
and (find_pos - cl >= 0 and not (texts_reverse[find_pos-cl].isdigit()))
and (find_pos + cl < center_pos and not (texts_reverse[find_pos+cl].isdigit()))
):
return center_pos - find_pos
find_pos = texts.find(_chr, center_pos)
if (0 <= find_pos < max_length
and (find_pos - cl >= 0 and not (texts[find_pos-cl].isdigit()))
and (find_pos + cl < len(texts) and not (texts[find_pos+cl].isdigit()))
):
return find_pos + cl
for _chr in ['——', '……', '、', '(', ')', '(', ')', '[', ']', '【', '】']:
find_pos = texts[:center_pos][::-1].find(_chr)
if 0 <= find_pos < center_pos:
return center_pos - find_pos
find_pos = texts.find(_chr, center_pos)
if 0 <= find_pos < max_length:
return find_pos + len(_chr)
for _chr in ['~', ' ', '\t']:
find_pos = texts[:center_pos][::-1].find(_chr)
if 0 <= find_pos < center_pos:
return center_pos - find_pos
find_pos = texts.find(_chr, center_pos)
if 0 <= find_pos < max_length:
return find_pos + len(_chr)
return min(len(texts), max_length)
batch_utt_id, batch_utt_text = [], []
i = 0
while len(utt_text) > 0:
pos = find_nearest_center(utt_text)
if pos > self.max_utt_length:
pos = self.max_utt_length - 1
batch_utt_text.append(utt_text[:pos] + ",")
else:
batch_utt_text.append(utt_text[:pos])
batch_utt_id.append(f"{utt_id}-{i}")
utt_text = utt_text[pos:]
i += 1
return batch_utt_id, batch_utt_text
@torch.no_grad()
def speaking(self, inputs : dict) -> dict:
inputs, utt_id, utt_text, spkid, volume, speed, pitch, sampling_rate, tail_silence, emotion = \
self._parse_input(inputs)
batch_utt_id, batch_utt_text = self._split_utt_text(utt_id, utt_text)
batch_wav, batch_wavlen = [], 0
segment_info, start_ms, end_ms = [], 0, 0
time_used_frontend, time_used_backend = 0, 0
for idx, (utt_id, utt_text) in enumerate(zip(batch_utt_id, batch_utt_text), 1):
start = time.time()
utt_id, utt_segtext, utt_vector = self.textparser(utt_id, utt_text)
print('@@@@@@@@@@@@@@@@@@@@@@@@@')
print('utt_id,', utt_id)
utt_segtext = utt_segtext.printer()
print('utt_segtext1, ', utt_segtext)
#if 'AA/(ae)1-(aa)1' in utt_segtext:
# print('warning!!!')
# utt_segtext = utt_segtext.replace('AA/(ae)1-(aa)1', 'AA/(ey)1-(ey)1') # AA/(ae)1-(aa)1
#print('utt_segtext, ', utt_segtext)
print('utt_vector', utt_vector)
end = time.time()
time_used_frontend += end - start
start = end
wav, emotion = self.speecher.infer(spkid, utt_vector, emotion, duration_rate=speed)
batch_wavlen += len(wav)
if pitch != 1.0:
wav = resample(wav, orig_sr=int(self.default_sampling_rate/pitch), target_sr=self.default_sampling_rate)
sr = self.default_sampling_rate
if sampling_rate > sr and self.asv is not None:
wav = np.expand_dims(wav, axis=0)
wav, sr = self.asv.infer(wav, sr)
wav = np.squeeze(wav, axis=0)
if sampling_rate != sr:
wav = resample(wav, orig_sr=sr, target_sr=sampling_rate)
wav = np.clip(wav * volume * 32767, -32768, 32767).astype(np.int16)
if tail_silence > 0:
wav = np.pad(wav, [0, int(tail_silence*sampling_rate)])
batch_wav.append(wav)
end = time.time()
time_used_backend += end - start
end_ms += len(wav) / sampling_rate * 1000
segment_info.append({
"start_ms": start_ms,
"end_ms": end_ms,
"input_text": utt_text,
"segtext": utt_segtext,
})
start_ms = end_ms
rtf = (time_used_frontend + time_used_backend) / (batch_wavlen / self.default_sampling_rate)
batch_wav_bytes = bytes()
for idx, wav in enumerate(batch_wav, 1):
batch_wav_bytes += wav.tobytes()
outputs = self._handle_outputs(
inputs, batch_wav_bytes, sampling_rate, segment_info, time_used_frontend, time_used_backend, rtf)
return outputs
if __name__ == "__main__":
import argparse
loglv = 0
parser = argparse.ArgumentParser()
parser.add_argument('--device', "-d", type=str, required=False, default=None,
help='Use cuda or cpu.')
parser.add_argument("--checkpoint", "-c", default=None, type=str,
help="checkpoint file to be loaded.")
parser.add_argument("--emotion", "-e", default=None, type=str,
help="speaker Id or emotion file path. format: [spkid|path]:eid, "
"which `path` is emotion embedding file, `eid` is index.")
parser.add_argument('--utterance', '-u', type=str, required=False,
help='Input utterance with UTF-8 encoding to synthesize.')
parser.add_argument('--textfile', '-t', type=str, required=False,
help='Input text file with UTF-8 encoding to synthesize.')
parser.add_argument('--spkid', '--sid', '-i', type=int, required=False, default=1,
help='Set speaker ID. (default=1)')
parser.add_argument('--volume', '-v', type=float, required=False, default=1.0,
help='Set volume, its range is (0.0, 1.0]. (default=1.0)')
parser.add_argument('--speed', '-s', type=float, required=False, default=1.0,
help='Set speed, its range is (0.5, 1.0]. (default=1.0)')
parser.add_argument('--pitch', '-p', type=float, required=False, default=1.0,
help='Set pitch, its range is (0.0, 1.0]. (default=1.0)')
parser.add_argument('--tail-silence', '-a', type=float, required=False, default=0.0,
help='Set tail silence in second. (default=0.0)')
parser.add_argument('--sampling-rate', '-r', type=int, required=False,
help='Set sampling rate.')
parser.add_argument('--outdir', '-o', type=str, required=True,
help='Directory for saving synthetic wav.')
parser.add_argument('--outfn', '-n', type=str, required=True,
help='Filename for saving synthetic wav.')
parser.add_argument('--loglv', '-l', type=int, required=False, default=loglv,
help='Log level. (default={})'.format(loglv))
args = parser.parse_args()
# check args
if args.utterance is None and args.textfile is None:
raise ValueError("Please specify either --utterance or --textfile")
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
# construct tts instance
mytts = VITSWrap(args.checkpoint, device=args.device, loglv=args.loglv)
# set emotion
emotion = args.emotion.split(':') if args.emotion is not None else None
if emotion is not None:
if isinstance(emotion[0], str) and os.path.exists(emotion[0]):
emotion[0] = np.fromfile(emotion[0], dtype=np.float32).reshape(-1, 1024)
else:
emotion[0] = int(emotion[0])
if len(emotion) == 1:
emotion.append(-1)
else:
emotion[1] = int(emotion[1])
emotion = tuple(emotion)
# pack inputs
inputs = {
"spkid": args.spkid,
"volume": args.volume,
"speed": args.speed,
"pitch": args.pitch,
"emotion": emotion,
}
if args.sampling_rate is not None:
inputs["sampling_rate"] = args.sampling_rate
if args.tail_silence is not None:
inputs["tail_silence"] = max(0, args.tail_silence)
utt_text = []
if args.utterance is not None:
utt_text.append(args.utterance)
if args.textfile is not None:
with open(args.textfile, 'rt') as f:
for line in f:
line = line.strip()
if len(line) == 0: continue
utt_text.append(line)
# syntheize
outfn = "" if args.outfn is None else args.outfn
if len(outfn) > 0 and outfn[-4:].lower() != ".wav":
for idx, text in enumerate(utt_text, 1):
inputs["text"] = text
print("To synthesize:\n", inputs)
outputs = mytts.speaking(inputs)
wav = outputs.pop('wav')
print(outputs)
with open(os.path.join(args.outdir, f"{outfn}{idx:06d}.wav"), 'wb') as f:
f.write(wav)
else:
inputs["text"] = " ".join(utt_text)
print("To synthesize:\n", inputs)
outputs = mytts.speaking(inputs)
wav = outputs.pop('wav')
print(outputs)
with open(os.path.join(args.outdir, outfn), 'wb') as f:
f.write(wav)
print("Done!")