-
Notifications
You must be signed in to change notification settings - Fork 38
/
cifar10data.py
55 lines (45 loc) · 2.1 KB
/
cifar10data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import matplotlib.pyplot as plt
import numpy as np
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from utils import calc_dataset_stats
# Example DataLoader on CIFAR-10
class CIFAR10Data:
def __init__(self, args):
mean, std = calc_dataset_stats(torchvision.datasets.CIFAR10(root='./data', train=True,
download=args.download_dataset).train_data,
axis=(0, 1, 2))
train_transform = transforms.Compose(
[transforms.RandomCrop(args.img_height),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(0.3, 0.3, 0.3),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std)])
test_transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std)])
self.trainloader = DataLoader(torchvision.datasets.CIFAR10(root='./data', train=True,
download=args.download_dataset,
transform=train_transform),
batch_size=args.batch_size,
shuffle=args.shuffle, num_workers=args.dataloader_workers,
pin_memory=args.pin_memory)
self.testloader = DataLoader(torchvision.datasets.CIFAR10(root='./data', train=False,
download=args.download_dataset,
transform=test_transform),
batch_size=args.batch_size,
shuffle=False, num_workers=args.dataloader_workers,
pin_memory=args.pin_memory)
CIFAR10_LABELS_LIST = [
'airplane',
'automobile',
'bird',
'cat',
'deer',
'dog',
'frog',
'horse',
'ship',
'truck'
]