-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
89 lines (74 loc) · 2.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Copyright 2024 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0 DEED);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://creativecommons.org/licenses/by-nc/4.0/deed.en
#
import sys
import numpy as np
import torch
import monai.transforms as T
import argparse
from sklearn.metrics import roc_auc_score,roc_curve
import matplotlib.pyplot as plt
import torch.nn as nn
from Dataset import UKHD_Dataset
import random
from torch.utils.data import DataLoader
def seed_everything(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic=True
torch.backends.cudnn.benchmark=True
def predict_cases(model,loader,device):
outTransform = nn.Sigmoid()
labels = []
predictions = []
model=model.to(device)
with torch.no_grad():
for i in loader:
images=i[0]
label=i[1]
images=images.to(device)
images=images.type(torch.float32)
result=model(images)
result=outTransform(result)
labels.extend([label.item()])
predictions.extend([result.detach().cpu().numpy()])
testPred=np.array(predictions)
testLab=np.array(labels)
score=roc_auc_score(testLab,testPred[:,0,0])
fpr, tpr, threshold = roc_curve(testLab, testPred[:, 0, 0], pos_label=1)
plt.figure()
plt.plot(fpr, tpr,label=f'Class (AUC = {score:.2f})')
plt.legend(loc='lower right')
return score
def parse_args(argv):
parser=argparse.ArgumentParser()
parser.add_argument("-b","--batch_size",type=int,help="batch size",default=1)
parser.add_argument("-p","--path",type=str,help="Path to data location",default="./")
parser.add_argument("-s","--seed",type=int,help="Which Seed",default=42)
parser.add_argument("-m","--model",type=str,help="Path to trained model",default="./densenet169_batch_14.pth")
parser.add_argument("-d","--device",type=str,help="Device to use Cuda or CPU",default="cuda")
args=parser.parse_args(argv)
return args
def main(args):
seed_everything(args.seed)
model=torch.load(args.model)
model.eval()
trans_img = [T.ToTensor(),T.NormalizeIntensity()]
transform=T.Compose(trans_img)
trans_mask = [T.ToTensor()]
transform_mask = T.Compose(trans_mask)
device = torch.device(args.device)
DatasetClass=UKHD_Dataset(args.path,'test',[0,1,2,3], transform_image=transform, transform_mask=transform_mask)
loader=DataLoader(DatasetClass,batch_size=args.batch_size,shuffle=False)
score=predict_cases(model,loader,device)
print(f"Accuracy Score on the provided data: {score}")
if __name__=="__main__":
args=parse_args(sys.argv[1:])
main(args)