-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·205 lines (172 loc) · 8.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import argparse
import os
import yaml
import copy
import torch
import random
import numpy as np
from utils import dict2namespace, get_runner, namespace2dict
import torch.multiprocessing as mp
import torch.distributed as dist
import wandb
def parse_args_and_config():
parser = argparse.ArgumentParser(description=globals()['__doc__'])
parser.add_argument('-c', '--config', type=str, default='BB_base.yml', help='Path to the config file')
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed')
parser.add_argument('-r', '--result_path', type=str, default='results', help="The directory to save results")
parser.add_argument('-t', '--train', action='store_true', default=False, help='train the model')
parser.add_argument('--sample_to_eval', action='store_true', default=False, help='sample for evaluation')
parser.add_argument('--sample_at_start', action='store_true', default=False, help='sample at start(for debug)')
parser.add_argument('--save_top', action='store_true', default=False, help="save top loss checkpoint")
# system
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids, 0,1,2,3 cpu=-1')
parser.add_argument('--port', type=str, default='12355', help='DDP master port')
# resume
parser.add_argument('--resume_model', type=str, default=None, help='model checkpoint')
parser.add_argument('--resume_optim', type=str, default=None, help='optimizer checkpoint')
# name
parser.add_argument('--exp_name', type=str, help='experiment name (result dir name)')
# training
parser.add_argument('--max_epoch', type=int, default=None, help='optimizer checkpoint')
parser.add_argument('--max_steps', type=int, default=None, help='optimizer checkpoint')
# data
parser.add_argument('--dataset_type', type=str, default='' ,help='dataset type (search register)')
parser.add_argument('--plane', type=str, help='input view: axial, sagittal, coronal')
parser.add_argument('--HW', type=int, default=128, help='HW of input image')
parser.add_argument('--batch', type=int, default=8, help='batch size')
# model
parser.add_argument('--mt_type', type=str, default=None, help='mt_type')
parser.add_argument('--objective', type=str, default=None, help='objective')
parser.add_argument('--loss_type', type=str, default=None, help='loss_type')
parser.add_argument('--sample_step', type=int, default=None, help='sample step')
parser.add_argument('--num_timesteps', type=int, default=None, help='num_timesteps')
parser.add_argument('--ddim_eta', type=float, default=0.0, help='ddim_eta')
parser.add_argument('--max_var', type=float, default=1.0, help='max_var s')
parser.add_argument('--inference_type', type=str, default=None, help='inference_type: normal, average, ISTA_average, ISTA_mid')
parser.add_argument('--ISTA_step_size', type=float, default=None, help='ISTA_step_size')
parser.add_argument('--num_ISTA_step', type=int, default=None, help='num_ISTA_step')
args = parser.parse_args()
with open(args.config, 'r') as f:
dict_config = yaml.load(f, Loader=yaml.FullLoader)
namespace_config = dict2namespace(dict_config)
namespace_config.args = args
namespace_config.data.dataset_name += f"_{args.HW}"
namespace_config.data.dataset_config.image_size = args.HW
namespace_config.data.train.batch_size = args.batch
namespace_config.data.val.batch_size = args.batch
namespace_config.data.test.batch_size = args.batch
namespace_config.model.model_name = args.exp_name
namespace_config.model.BB.params.UNetParams.image_size = args.HW
namespace_config.model.BB.params.eta = args.ddim_eta
namespace_config.model.BB.params.max_var = args.max_var
if args.resume_model is not None:
namespace_config.model.model_load_path = args.resume_model
if args.resume_optim is not None:
namespace_config.model.optim_sche_load_path = args.resume_optim
if args.max_epoch is not None:
namespace_config.training.n_epochs = args.max_epoch
if args.max_steps is not None:
namespace_config.training.n_steps = args.max_steps
# model
if args.mt_type is not None:
namespace_config.model.BB.params.mt_type = args.mt_type
if args.objective is not None:
namespace_config.model.BB.params.objective = args.objective
if args.loss_type is not None:
namespace_config.model.BB.params.loss_type = args.loss_type
if args.sample_step is not None:
namespace_config.model.BB.params.sample_step = args.sample_step
if args.num_timesteps is not None:
namespace_config.model.BB.params.num_timesteps = args.num_timesteps
if args.inference_type is not None:
namespace_config.model.BB.params.inference_type = args.inference_type
if args.ISTA_step_size is not None:
namespace_config.model.BB.params.ISTA_step_size = args.ISTA_step_size
if args.num_ISTA_step is not None:
namespace_config.model.BB.params.num_ISTA_step = args.num_ISTA_step
if args.sample_to_eval:
if args.dataset_type != '':
namespace_config.data.dataset_type = args.dataset_type
dict_config = namespace2dict(namespace_config)
config_dict = {"train": args.train,
"gpu_ids": args.gpu_ids,
"dataset_type": namespace_config.data.dataset_type,
"image_size": namespace_config.data.dataset_config.image_size,
"max_epoch": namespace_config.training.n_epochs,
"n_steps": namespace_config.training.n_steps,
"batch_size": namespace_config.data.train.batch_size,
"mt_type": namespace_config.model.BB.params.mt_type,
"objective": namespace_config.model.BB.params.objective,
"loss_type": namespace_config.model.BB.params.loss_type,
"sample_step": namespace_config.model.BB.params.sample_step,
"num_timesteps": namespace_config.model.BB.params.num_timesteps,
"ddim_eta": namespace_config.model.BB.params.eta,
"max_var": namespace_config.model.BB.params.max_var,
}
if not args.sample_to_eval:
try:
wandb.init(project="", entity="", name=namespace_config.model.model_name, config=config_dict)
except:
print('Could not init wandb')
return namespace_config, dict_config
def set_random_seed(SEED=1234):
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def DDP_run_fn(rank, world_size, config):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = config.args.port
dist.init_process_group(backend='nccl', rank=rank, world_size=world_size)
set_random_seed(config.args.seed)
local_rank = dist.get_rank()
torch.cuda.set_device(local_rank)
config.training.device = [torch.device("cuda:%d" % local_rank)]
print('using device:', config.training.device)
config.training.local_rank = local_rank
runner = get_runner(config.runner, config)
if config.args.train:
runner.train()
else:
with torch.no_grad():
runner.test()
return
def CPU_singleGPU_launcher(config):
set_random_seed(config.args.seed)
runner = get_runner(config.runner, config)
if config.args.train:
runner.train()
else:
with torch.no_grad():
runner.test()
return
def DDP_launcher(world_size, run_fn, config):
mp.spawn(run_fn,
args=(world_size, copy.deepcopy(config)),
nprocs=world_size,
join=True)
def main():
nconfig, dconfig = parse_args_and_config()
args = nconfig.args
gpu_ids = args.gpu_ids
if gpu_ids == "-1": # Use CPU
nconfig.training.use_DDP = False
nconfig.training.device = [torch.device("cpu")]
CPU_singleGPU_launcher(nconfig)
else:
gpu_list = gpu_ids.split(",")
if len(gpu_list) > 1:
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_ids
nconfig.training.use_DDP = True
DDP_launcher(world_size=len(gpu_list), run_fn=DDP_run_fn, config=nconfig)
else:
nconfig.training.use_DDP = False
nconfig.training.device = [torch.device(f"cuda:{gpu_list[0]}")]
CPU_singleGPU_launcher(nconfig)
return
if __name__ == "__main__":
main()