forked from ludles/OralScreen
-
Notifications
You must be signed in to change notification settings - Fork 3
/
generator.py
421 lines (369 loc) · 16.8 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# -*- coding: utf-8 -*-
"""
Created on Fri Jan 27 19:16:49 2017
@author: Weidi Xie
@description:
This is used for augmentation on-the-fly.
"""
import numpy as np
import re
from scipy import linalg
import scipy.ndimage as ndi
# from six.moves import range
import os
import threading
import matplotlib.pyplot as plt
from keras import backend as K
def random_channel_shift(x, intensity, channel_index=0):
x = np.rollaxis(x, channel_index, 0)
min_x, max_x = np.min(x), np.max(x)
channel_images = [np.clip(x_channel + np.random.uniform(-intensity, intensity), min_x, max_x)
for x_channel in x]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_index+1)
return x
def transform_matrix_offset_center(matrix, x, y):
o_x = float(x) / 2 + 0.5
o_y = float(y) / 2 + 0.5
offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]])
reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]])
transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix)
return transform_matrix
def apply_transform(x, transform_matrix, channel_index=0, fill_mode='nearest', cval=0.):
x = np.rollaxis(x, channel_index, 0)
final_affine_matrix = transform_matrix[:2, :2]
final_offset = transform_matrix[:2, 2]
channel_images = [ndi.interpolation.affine_transform(x_channel, final_affine_matrix,
final_offset, order=0, mode=fill_mode, cval=cval) for x_channel in x]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_index+1)
return x
def flip_axis(x, axis):
x = np.asarray(x).swapaxes(axis, 0)
x = x[::-1, ...]
x = x.swapaxes(0, axis)
return x
def array_to_img(x, dim_ordering='default', scale=True):
from PIL import Image
if dim_ordering == 'default':
dim_ordering = K.image_dim_ordering()
if dim_ordering == 'th':
x = x.transpose(1, 2, 0)
if scale:
x += max(-np.min(x), 0)
x /= np.max(x)
x *= 255
if x.shape[2] == 3:
# RGB
return Image.fromarray(x.astype('uint8'), 'RGB')
elif x.shape[2] == 1:
# grayscale
return Image.fromarray(x[:, :, 0].astype('uint8'), 'L')
else:
raise Exception('Unsupported channel number: ', x.shape[2])
def img_to_array(img, dim_ordering='default'):
if dim_ordering == 'default':
dim_ordering = K.image_dim_ordering()
if dim_ordering not in ['th', 'tf']:
raise Exception('Unknown dim_ordering: ', dim_ordering)
# image has dim_ordering (height, width, channel)
x = np.asarray(img, dtype='float32')
if len(x.shape) == 3:
if dim_ordering == 'th':
x = x.transpose(2, 0, 1)
elif len(x.shape) == 2:
if dim_ordering == 'th':
x = x.reshape((1, x.shape[0], x.shape[1]))
else:
x = x.reshape((x.shape[0], x.shape[1], 1))
else:
raise Exception('Unsupported image shape: ', x.shape)
return x
class ImageDataGenerator(object):
'''Generate minibatches with
real-time data augmentation.
Assume X is train img, Y is train label (same size as X with only 0 and 255 for values)
# Arguments
featurewise_center: set input mean to 0 over the dataset. Only to X
samplewise_center: set each sample mean to 0. Only to X
featurewise_std_normalization: divide inputs by std of the dataset. Only to X
samplewise_std_normalization: divide each input by its std. Only to X
zca_whitening: apply ZCA whitening. Only to X
rotation_range: degrees (0 to 180). To X and Y
width_shift_range: fraction of total width. To X and Y
height_shift_range: fraction of total height. To X and Y
shear_range: shear intensity (shear angle in radians). To X and Y
zoom_range: amount of zoom. if scalar z, zoom will be randomly picked
in the range [1-z, 1+z]. A sequence of two can be passed instead
to select this range. To X and Y
channel_shift_range: shift range for each channels. Only to X
fill_mode: points outside the boundaries are filled according to the
given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default
is 'nearest'. For Y, always fill with constant 0
cval: value used for points outside the boundaries when fill_mode is
'constant'. Default is 0.
horizontal_flip: whether to randomly flip images horizontally. To X and Y
vertical_flip: whether to randomly flip images vertically. To X and Y
rescale: rescaling factor. If None or 0, no rescaling is applied,
otherwise we multiply the data by the value provided (before applying
any other transformation). Only to X
dim_ordering: 'th' or 'tf'. In 'th' mode, the channels dimension
(the depth) is at index 1, in 'tf' mode it is at index 3.
It defaults to the `image_dim_ordering` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "th".
'''
def __init__(self,
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=0.,
width_shift_range=0.,
height_shift_range=0.,
shear_range=0.,
zoom_range=0.,
channel_shift_range=0.,
fill_mode='nearest',
cval=0.,
horizontal_flip=False,
vertical_flip=False,
rescale=None,
dim_ordering='default'):
if dim_ordering == 'default':
dim_ordering = K.image_dim_ordering()
self.__dict__.update(locals())
self.mean = None
self.std = None
self.principal_components = None
self.rescale = rescale
if dim_ordering not in {'tf', 'th'}:
raise Exception('dim_ordering should be "tf" (channel after row and '
'column) or "th" (channel before row and column). '
'Received arg: ', dim_ordering)
self.dim_ordering = dim_ordering
if dim_ordering == 'th':
self.channel_index = 1
self.row_index = 2
self.col_index = 3
if dim_ordering == 'tf':
self.channel_index = 3
self.row_index = 1
self.col_index = 2
if np.isscalar(zoom_range):
self.zoom_range = [1 - zoom_range, 1 + zoom_range]
elif len(zoom_range) == 2:
self.zoom_range = [zoom_range[0], zoom_range[1]]
else:
raise Exception('zoom_range should be a float or '
'a tuple or list of two floats. '
'Received arg: ', zoom_range)
def flow(self, X, y=None, batch_size=32, shuffle=True, seed=None,
save_to_dir=None, save_prefix='', save_format='jpeg'):
return NumpyArrayIterator(
X, y, self,
batch_size=batch_size, shuffle=shuffle, seed=seed,
dim_ordering=self.dim_ordering,
save_to_dir=save_to_dir, save_prefix=save_prefix, save_format=save_format)
def standardize(self, x):
# Only applied to X
if self.rescale:
x *= self.rescale
# x is a single image, so it doesn't have image number at index 0
img_channel_index = self.channel_index - 1
if self.samplewise_center:
x -= np.mean(x, axis=img_channel_index, keepdims=True)
if self.samplewise_std_normalization:
x /= (np.std(x, axis=img_channel_index, keepdims=True) + 1e-7)
if self.featurewise_center:
x -= self.mean
if self.featurewise_std_normalization:
x /= (self.std + 1e-7)
if self.zca_whitening:
flatx = np.reshape(x, (x.size))
whitex = np.dot(flatx, self.principal_components)
x = np.reshape(whitex, (x.shape[0], x.shape[1], x.shape[2]))
return x
def random_transform(self, x, y):
# Need to modify to transform both X and Y ---- to do
# x is a single image, so it doesn't have image number at index 0
img_row_index = self.row_index - 1
img_col_index = self.col_index - 1
img_channel_index = self.channel_index - 1
# use composition of homographies to generate final transform that needs to be applied
if self.rotation_range:
theta = np.pi / 180 * np.random.uniform(-self.rotation_range, self.rotation_range)
else:
theta = 0
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
if self.height_shift_range:
tx = np.random.uniform(-self.height_shift_range, self.height_shift_range) * x.shape[img_row_index]
else:
tx = 0
if self.width_shift_range:
ty = np.random.uniform(-self.width_shift_range, self.width_shift_range) * x.shape[img_col_index]
else:
ty = 0
translation_matrix = np.array([[1, 0, tx],
[0, 1, ty],
[0, 0, 1]])
if self.shear_range:
shear = np.random.uniform(-self.shear_range, self.shear_range)
else:
shear = 0
shear_matrix = np.array([[1, -np.sin(shear), 0],
[0, np.cos(shear), 0],
[0, 0, 1]])
if self.zoom_range[0] == 1 and self.zoom_range[1] == 1:
zx, zy = 1, 1
else:
zx, zy = np.random.uniform(self.zoom_range[0], self.zoom_range[1], 2)
zoom_matrix = np.array([[zx, 0, 0],
[0, zy, 0],
[0, 0, 1]])
transform_matrix = np.dot(np.dot(np.dot(rotation_matrix, translation_matrix), shear_matrix), zoom_matrix)
h, w = x.shape[img_row_index], x.shape[img_col_index]
transform_matrix = transform_matrix_offset_center(transform_matrix, h, w)
x = apply_transform(x, transform_matrix, img_channel_index,
fill_mode=self.fill_mode, cval=self.cval)
# For y, mask data, fill mode constant, cval = 0
y = apply_transform(y, transform_matrix, img_channel_index,
fill_mode=self.fill_mode, cval= self.cval)
if self.channel_shift_range != 0:
x = random_channel_shift(x, self.channel_shift_range, img_channel_index)
if self.horizontal_flip:
if np.random.random() < 0.5:
x = flip_axis(x, img_col_index)
y = flip_axis(y, img_col_index)
if self.vertical_flip:
if np.random.random() < 0.5:
x = flip_axis(x, img_row_index)
y = flip_axis(y, img_row_index)
# TODO:
# channel-wise normalization
# barrel/fisheye
return x, y
def fit(self, X,
augment=False,
rounds=1,
seed=None):
'''Required for featurewise_center, featurewise_std_normalization
and zca_whitening.
# Arguments
X: Numpy array, the data to fit on.
augment: whether to fit on randomly augmented samples
rounds: if `augment`,
how many augmentation passes to do over the data
seed: random seed.
# Only applied to X
'''
X = np.copy(X)
if augment:
aX = np.zeros(tuple([rounds * X.shape[0]] + list(X.shape)[1:]))
for r in range(rounds):
for i in range(X.shape[0]):
aX[i + r * X.shape[0]] = self.random_transform(X[i])
X = aX
if self.featurewise_center:
self.mean = np.mean(X, axis=0)
X -= self.mean
if self.featurewise_std_normalization:
self.std = np.std(X, axis=0)
X /= (self.std + 1e-7)
if self.zca_whitening:
flatX = np.reshape(X, (X.shape[0], X.shape[1] * X.shape[2] * X.shape[3]))
sigma = np.dot(flatX.T, flatX) / flatX.shape[1]
U, S, V = linalg.svd(sigma)
self.principal_components = np.dot(np.dot(U, np.diag(1. / np.sqrt(S + 10e-7))), U.T)
class Iterator(object):
def __init__(self, N, batch_size, shuffle, seed):
self.N = N
self.batch_size = batch_size
self.shuffle = shuffle
self.batch_index = 0
self.total_batches_seen = 0
self.lock = threading.Lock()
self.index_generator = self._flow_index(N, batch_size, shuffle, seed)
def reset(self):
self.batch_index = 0
def _flow_index(self, N, batch_size=32, shuffle=False, seed=None):
# ensure self.batch_index is 0
self.reset()
while 1:
if self.batch_index == 0:
index_array = np.arange(N)
if shuffle:
if seed is not None:
np.random.seed(seed + self.total_batches_seen)
index_array = np.random.permutation(N)
current_index = (self.batch_index * batch_size) % N
if N >= current_index + batch_size:
current_batch_size = batch_size
self.batch_index += 1
else:
current_batch_size = N - current_index
self.batch_index = 0
self.total_batches_seen += 1
yield (index_array[current_index: current_index + current_batch_size],
current_index, current_batch_size)
def __iter__(self):
# needed if we want to do something like:
# for x, y in data_gen.flow(...):
return self
def __next__(self, *args, **kwargs):
# ?
return self.next(*args, **kwargs)
class NumpyArrayIterator(Iterator):
def __init__(self, X, y, image_data_generator,
batch_size=32, shuffle=False, seed=None,
dim_ordering='default',
save_to_dir=None, save_prefix='', save_format='jpeg'):
if len(X) != len(y):
raise Exception('X (images tensor) and y (labels) '
'should have the same length. '
'Found: X.shape = %s, y.shape = %s' % (np.asarray(X).shape, np.asarray(y).shape))
if dim_ordering == 'default':
dim_ordering = K.image_dim_ordering()
self.X = X
self.y = y
self.image_data_generator = image_data_generator
self.dim_ordering = dim_ordering
self.save_to_dir = save_to_dir
self.save_prefix = save_prefix
self.save_format = save_format
super(NumpyArrayIterator, self).__init__(X.shape[0], batch_size, shuffle, seed)
def next(self):
# for python 2.x.
# Keeps under lock only the mechanism which advances
# the indexing of each batch
# see http://anandology.com/blog/using-iterators-and-generators/
with self.lock:
index_array, current_index, current_batch_size = next(self.index_generator)
# The transformation of images is not under thread lock so it can be done in parallel
batch_x = np.zeros(tuple([current_batch_size] + list(self.X.shape)[1:]))
batch_y = np.zeros(tuple([current_batch_size] + list(self.y.shape)[1:]))
for i, j in enumerate(index_array):
x = self.X[j]
label = self.y[j]
x, label = self.image_data_generator.random_transform(x.astype('float32'), label.astype('float32'))
x = self.image_data_generator.standardize(x)
batch_x[i] = x
batch_y[i] = label
if self.save_to_dir:
for i in range(current_batch_size):
img = array_to_img(batch_x[i], self.dim_ordering, scale=True)
fname = '{prefix}_{index}_{hash}.{format}'.format(prefix=self.save_prefix,
index=current_index + i,
hash=np.random.randint(1e4),
format=self.save_format)
img.save(os.path.join(self.save_to_dir, fname))
mask = array_to_img(batch_y[i], self.dim_ordering, scale=True)
fname = '{prefix}_{index}_{hash}_mask.{format}'.format(prefix=self.save_prefix,
index=current_index + i,
hash=np.random.randint(1e4),
format=self.save_format)
mask.save(os.path.join(self.save_to_dir, fname))
return batch_x, batch_y