-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_vae.py
227 lines (190 loc) · 10.7 KB
/
train_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import argparse, os, datetime, glob, yaml
from bitters.models.vqvae import WaveNet, WaveVAE, WaveGAN
from bitters.loader import ImageDataModule
from bitters.callbacks.image_logger import ReconstructedImageLogger, AdversarialImageLogger
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.strategies.ddp import DDPStrategy
if __name__ == "__main__":
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser(description='AugVAE Training')
#path configuration
parser.add_argument('--train_dir', type=str, default='dataset/train/',
help='path to train dataset')
parser.add_argument('--val_dir', type=str, default='dataset/val/',
help='path to val dataset')
parser.add_argument('--log_dir', type=str, default='results/',
help='path to save logs')
parser.add_argument('--backup_dir', type=str, default='backups/',
help='path to save backups for sudden crash')
parser.add_argument('--ckpt_path', type=str,
help='path to previous checkpoint')
parser.add_argument('--pretrained_path', type=str,
help='path to pretrained codebook')
#training configuration
parser.add_argument('--resume', action='store_true', default=False,
help='whether to resume from checkpoint')
parser.add_argument('--finetune', action='store_true', default=False,
help='finetune pretrained model')
parser.add_argument('--backup', action='store_true', default=False,
help='save backup and load from backup if restart happens')
parser.add_argument('--backup_steps', type =int, default = 1000,
help='saves backup every n training steps')
parser.add_argument('--log_images', action='store_true', default=False,
help='log image outputs. not recommended for tpus')
parser.add_argument('--image_log_steps', type=int, default=1000,
help='log image outputs for every n step. not recommended for tpus')
parser.add_argument('--refresh_rate', type=int, default=1,
help='progress bar refresh rate')
parser.add_argument('--precision', type=str, default=32,
help='precision for training')
parser.add_argument('--fake_data', action='store_true', default=False,
help='using fake_data for debugging')
parser.add_argument('--seed', type=int, default=42,
help='random seed')
parser.add_argument('--gpus', type=int, default=16,
help='number of gpus')
parser.add_argument('--num_sanity_val_steps', type=int, default=0,
help='num_sanity_val_steps')
parser.add_argument('--val_percent_check', type=int, default=100,
help='num_val_percent')
parser.add_argument('--learning_rate', default=1.0e-4, type=float,
help='base learning rate')
parser.add_argument('--lr_decay', action='store_true', default=False,
help = 'use learning rate decay')
parser.add_argument('--batch_size', type=int, default=8,
help='training settings')
parser.add_argument('--epochs', type=int, default=100,
help='training settings')
parser.add_argument('--num_workers', type=int, default=16,
help='training settings')
parser.add_argument('--img_size', type=int, default=256,
help='training settings')
parser.add_argument('--resize_ratio', type=float, default=0.75,
help='Random resized crop lower ratio')
parser.add_argument('--debug', action='store_true', default=False,
help='debug run')
parser.add_argument('--warmup_percentage', type = float, default=0.01,
help = 'Percentage of warmup stage')
#model configuration
parser.add_argument('--model', type=str, default='pretrain')
parser.add_argument('--codebook_dim', type=int, default=64,
help='number of embedding dimension for codebook')
parser.add_argument('--num_tokens', type=int, default=8192,
help='codebook size')
parser.add_argument('--resolution', type=int, default=256,
help='image resolution')
parser.add_argument('--in_channels', type=int, default=3,
help='input image channel')
parser.add_argument('--out_channels', type=int, default=3,
help='output image channel')
parser.add_argument('--hidden_dim', type=int, default=128,
help='hidden dimension init size')
parser.add_argument('--num_res_blocks', type=int, default=16,
help='number of resnet blocks')
#loss configuration
parser.add_argument('--loss_type', type=str, default='mse')
parser.add_argument('--p_loss_weight', type = float, default=0.1,
help = 'Perceptual loss weight')
parser.add_argument('--disc_weight', type = float, default=0.1,
help = 'Adversarial loss weight')
#misc configuration
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
#random seed fix
seed_everything(args.seed)
tpus = None
gpus = args.gpus
args.world_size = args.gpus
datamodule = ImageDataModule(args.train_dir, args.val_dir,
args.batch_size, args.num_workers,
args.img_size, (args.model=='pretrain'), args.resize_ratio)
datamodule.setup()
args.steps_per_epoch = len(datamodule.train_dataloader()) // args.world_size + 1
# model
if args.model == 'gan':
model = WaveGAN.load_from_checkpoint(args.pretrained_path, args=args,
batch_size=args.batch_size,
learning_rate=args.learning_rate)
model.setup_gan(args)
elif args.model == 'vae':
model = WaveVAE.load_from_checkpoint(args.pretrained_path, args=args,
batch_size=args.batch_size,
learning_rate=args.learning_rate)
model.setup_vae(args)
else:
model = WaveNet(args, args.batch_size, args.learning_rate)
default_root_dir = args.log_dir
if args.debug:
limit_train_batches = 100
limit_test_batches = 100
args.backup_steps = 10
args.image_log_steps = 10
else:
limit_train_batches = 1.0
limit_test_batches = 1.0
if args.resume:
ckpt_path = args.ckpt_path
else:
ckpt_path = None
if args.model == 'pretrain':
target_loss = 'total_loss'
else:
target_loss = 'rec_loss'
if args.val_percent_check ==0:
checkpoint_callback = ModelCheckpoint(monitor=f"train/{target_loss}")
else:
checkpoint_callback = ModelCheckpoint(monitor=f"val/{target_loss}")
if args.model == 'gan':
model_name = 'wavegan'
elif args.model == 'vae':
model_name = 'wavevae'
else:
model_name = 'wavenet'
if args.backup:
args.backup_dir = os.path.join(args.backup_dir, f'vae/{model_name}')
backup_callback = ModelCheckpoint(
dirpath=args.backup_dir,
every_n_train_steps = args.backup_steps,
filename='{epoch}_{step}'
)
if len(glob.glob(os.path.join(args.backup_dir,'*.ckpt'))) != 0 :
ckpt_path = sorted(glob.glob(os.path.join(args.backup_dir,'*.ckpt')))[-1]
if args.resume:
print("Setting default ckpt to {}. If this is unexpected behavior, remove {}".format(ckpt_path, ckpt_path))
logger = pl.loggers.tensorboard.TensorBoardLogger(args.log_dir, name=f'{model_name}')
trainer = Trainer(devices=gpus,
strategy = DDPStrategy(find_unused_parameters=(args.model=='gan')),
accelerator="gpu",
max_epochs=args.epochs,
precision=args.precision, benchmark=True,
num_sanity_val_steps=args.num_sanity_val_steps,
limit_val_batches = args.val_percent_check,
limit_train_batches=limit_train_batches,
limit_test_batches=limit_test_batches,
callbacks=[checkpoint_callback],
logger = logger)
trainer.callbacks.append(LearningRateMonitor(logging_interval='step'))
if args.backup:
trainer.callbacks.append(backup_callback)
if args.resume:
trainer.callbacks.append(ModelCheckpoint())
if args.log_images:
if args.model == 'pretrain':
trainer.callbacks.append(ReconstructedImageLogger(every_n_steps=args.image_log_steps, nrow=args.batch_size))
else:
trainer.callbacks.append(AdversarialImageLogger(every_n_steps=args.image_log_steps, nrow=args.batch_size))
print("Setting batch size: {} learning rate: {:.2e}".format(model.hparams.batch_size, model.hparams.learning_rate))
trainer.fit(model, datamodule=datamodule, ckpt_path=ckpt_path)