-
Notifications
You must be signed in to change notification settings - Fork 35
/
postprocessing.py
164 lines (138 loc) · 6.1 KB
/
postprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from skimage.measure import label, regionprops
import numpy as np
import SimpleITK as sitk
from utils import _sitk_Image_reader, _sitk_image_writer
import os
from multiprocessing import Pool
from functools import partial
###---###---###---###---###---###---###---###---###---###---###---###---###---###---###---###---###---###---###---###---
def gatherfiles(path, prefix=None, midfix=None, postfix=None, extname=True):
files = os.listdir(path)
if not prefix is None:
files = [i for i in files if i.startswith(prefix)]
if not midfix is None:
files = [i for i in files if midfix in i]
if not postfix is None:
files = [i for i in files if i.endswith(postfix)]
if extname:
return files
else:
files = [os.path.splitext(i)[0] for i in files]
return files
def sdf_func(segImg):
"""
segImg is a sitk Image
"""
Sdf = sitk.SignedMaurerDistanceMap(segImg, squaredDistance=False)
# Sdf = sitk.Sigmoid(-Sdf, 50, 0, 1, 0) # alpha, beta, max, min
Sdf = sitk.Sigmoid(-Sdf, 10, 0, 1, 0) # alpha, beta, max, min
seg = sitk.GetArrayFromImage(Sdf)
seg[seg > 0.4999] = 1 # convert sdf back to numpy array, and clip 0.5 above to 1 (inside)
return seg
def raw_sdf_func(segImg):
Sdf = sitk.SignedMaurerDistanceMap(segImg, insideIsPositive=False, squaredDistance=False)
seg = sitk.GetArrayFromImage(Sdf)
return seg
def newsdf_post_processor(pred, main_region_th = 100000, sdf_th = 35, region_th = 2000):
pred_test = pred.copy()
mask_whole = np.zeros_like(pred_test)
for anot in range(1, pred.max() + 1):
print('i', anot)
pred_single = np.zeros_like(pred_test)
pred_single[pred_test == anot] = 1
connected_label = label(pred_single, connectivity=pred_single.ndim)
props = regionprops(connected_label)
sorted_Props = sorted(props, key=lambda e: e.__getitem__('area'), reverse=True)
mask_single = np.zeros_like(pred_test)
index = None
for idx_r, i in enumerate(range(len(sorted_Props))):
print('ii', i)
if sorted_Props[i]['area'] > main_region_th or idx_r == 0:
print(sorted_Props[i]['area'])
mask_single[connected_label == sorted_Props[i]['label']] = 1
else:
# only keep region bigger than main_region_th, here.
index = i
break
if index == None:
mask_whole[mask_single > 0] = 1
continue
### second stage
sdf_distance_mask_single = raw_sdf_func(sitk.GetImageFromArray(mask_single))
sdf_mask_single = np.zeros_like(pred)
sdf_mask_single[sdf_distance_mask_single < sdf_th] = 1
sdf_mask_single = sdf_mask_single.astype('uint16')
# if True:
# sdf_mask_single_2save = sdf_mask_single.copy() * 5
# sdf_mask_single_2save[pred > 0] = pred[pred > 0]
# path = '/home1/pbliu/all_data/nnUNet/IL_test_tmp/2017_05163189_SongSiBao_crop_mask_4label.nii.gz'
# _, _, meta = _sitk_Image_reader(path)
# print('name:', '_visual{}.nii.gz'.format(anot))
# _sitk_image_writer(sdf_mask_single_2save, meta, path.replace('.nii.gz', '_visual{}.nii.gz'.format(anot)))
# else:
# pass
for i in range(index, len(sorted_Props)):
print('iii', i)
if sorted_Props[i]['area'] < region_th:
break
else:
part = np.zeros_like(pred_test)
part[connected_label == sorted_Props[i]['label']] = 1
if (part * sdf_mask_single).sum() > 0:
mask_single[connected_label == sorted_Props[i]['label']] = 1
mask_whole[mask_single > 0] = 1
result = mask_whole * pred
return result
def maximum_connected_region_post_processor(pred, region_th = 100000):
"""
pred: multi-label
return: multi-label
"""
pred_test = pred.copy()
mask_whole = np.zeros_like(pred)
for i in range(1, pred.max()+1):
pred_single = np.zeros_like(pred_test)
pred_single[pred_test==i] = 1
connected_label = label(pred_single, connectivity=pred_single.ndim)
props = regionprops(connected_label)
sorted_Props = sorted(props, key=lambda e: e.__getitem__('area'), reverse=True)
mask_single = np.zeros_like(pred)
for i in range(len(sorted_Props)):
# print(sorted_Props[i]['area'],sorted_Props[i]['label'])
if sorted_Props[i]['area']>region_th or i==0: # i==0, make sure the biggest area can be keeped.
mask_single[connected_label==sorted_Props[i]['label']] = 1
else:
pass
mask_whole[mask_single>0]=1
return mask_whole*pred
if __name__ == '__main__':
"""
SDF post processor
"""
def func(name, path, savepath, post='sdf'):
_, image, meta = _sitk_Image_reader(path+'/'+name)
print(name, image.shape)
if post=='sdf':
post_image = newsdf_post_processor(pred=image, region_th=2000, sdf_th=35)
elif post=='mcr':
post_image = maximum_connected_region_post_processor(image, region_th=100000)
else:
raise NotImplementedError
_sitk_image_writer(post_image, meta, savepath+'/'+name)
base_dir = os.environ['HOME']
pred_path = base_dir + "/all_data/nnUNet/rawdata/ipcai2021_ALL_Test/SDF_show" \
"/Task22_ipcai2021_T__nnUNet_without_mirror_IPCAI2021_deeps_exclusion__nnUNet_without_mirror_IPCAI2021_deeps_exclusion__fold0_3dcascadefullres_pred"
save_path = pred_path+'___newSDFpost'
if not os.path.exists(save_path):
os.makedirs(save_path)
print(pred_path)
files = gatherfiles(pred_path, postfix='.nii.gz')
print(len(files))
files = list(set(files))
print(len(files))
files = sorted(files)
pool = Pool(16)
fu = partial(func, path=pred_path, savepath=save_path)
_=pool.map(fu, files)
pool.close()
pool.join()