-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMy_KMeans.py
81 lines (62 loc) · 2.7 KB
/
My_KMeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
from numpy.linalg import norm
import random
class MyKmeans:
# constructor
def __init__(self, n_clusters, max_iters=100, random_state=564, init_centroids=None):
self.n_clusters = n_clusters
self.max_iters = max_iters
self.random_state = random_state
# centroids
self.centroids = init_centroids
# find random centroid at the beginning
def initialize_centroids(self, X):
# set random state => guarantees that same randomization occurs every time
np.random.RandomState(self.random_state)
rand_idx = random.sample(range(X.shape[0]), self.n_clusters)
return X[rand_idx]
# compute centroids of data
def compute_centroids(self, X, labels):
# reset centroids
# c1 = [0, 0]
# c2 = [0, 0]
centroids = np.zeros((self.n_clusters, X.shape[1]))
for k in range(self.n_clusters):
centroids[k, :] = np.mean(X[labels == k, :], axis=0)
return centroids
# compute distances to the centroids
def compute_distance(self, X, centroids):
# initialize distance vector
# distance of every data point with each clustor_centroid
distance = np.zeros((X.shape[0], self.n_clusters))
for k in range(self.n_clusters):
# compute Euclidean distance vector
row_norm = norm(X - centroids[k, :], axis=1)
distance[:, k] = np.square(row_norm)
return distance
# return list of indices of min values along axis
def find_closest_cluster(self, distance):
# return indices of minimum values along axis
return np.argmin(distance, axis=1)
# sum of squared root of distances
# @TODO: take min sum of a cluster
def compute_sse(self, X, labels, centroids):
distance = np.zeros(X.shape[0])
for k in range(self.n_clusters):
distance[labels == k] = norm(X[labels == k] - centroids[k], axis=1)
return np.sum(np.square(distance))
def fit(self, X):
if self.centroids is None:
self.centroids = self.initialize_centroids(X)
for i in range(self.max_iters):
old_centroids = self.centroids
distance = self.compute_distance(X, old_centroids)
self.labels = self.find_closest_cluster(distance)
self.centroids = self.compute_centroids(X, self.labels)
# stopping condition (centroids didn't change)
if np.all(old_centroids == self.centroids):
break;
self.error = self.compute_sse(X, self.labels, self.centroids)
def predict(self, X):
distance = self.compute_distance(X, self.centroids)
return self.find_closest_cluster(distance)