forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess_classification_data.py
455 lines (362 loc) · 15 KB
/
preprocess_classification_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script to pre-process classification data into tfrecords."""
import collections
import csv
import os
# Import libraries
from absl import app
from absl import flags
from absl import logging
import numpy as np
import tensorflow as tf
import sentencepiece as spm
from official.nlp.xlnet import classifier_utils
from official.nlp.xlnet import preprocess_utils
flags.DEFINE_bool(
"overwrite_data",
default=False,
help="If False, will use cached data if available.")
flags.DEFINE_string("output_dir", default="", help="Output dir for TF records.")
flags.DEFINE_string(
"spiece_model_file", default="", help="Sentence Piece model path.")
flags.DEFINE_string("data_dir", default="", help="Directory for input data.")
# task specific
flags.DEFINE_string("eval_split", default="dev", help="could be dev or test")
flags.DEFINE_string("task_name", default=None, help="Task name")
flags.DEFINE_integer(
"eval_batch_size", default=64, help="batch size for evaluation")
flags.DEFINE_integer("max_seq_length", default=128, help="Max sequence length")
flags.DEFINE_integer(
"num_passes",
default=1,
help="Num passes for processing training data. "
"This is use to batch data without loss for TPUs.")
flags.DEFINE_bool("uncased", default=False, help="Use uncased.")
flags.DEFINE_bool(
"is_regression", default=False, help="Whether it's a regression task.")
flags.DEFINE_bool(
"use_bert_format",
default=False,
help="Whether to use BERT format to arrange input data.")
FLAGS = flags.FLAGS
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for prediction."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with tf.io.gfile.GFile(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
# pylint: disable=g-explicit-length-test
if len(line) == 0:
continue
lines.append(line)
return lines
class GLUEProcessor(DataProcessor):
"""GLUEProcessor."""
def __init__(self):
self.train_file = "train.tsv"
self.dev_file = "dev.tsv"
self.test_file = "test.tsv"
self.label_column = None
self.text_a_column = None
self.text_b_column = None
self.contains_header = True
self.test_text_a_column = None
self.test_text_b_column = None
self.test_contains_header = True
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, self.train_file)), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, self.dev_file)), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
if self.test_text_a_column is None:
self.test_text_a_column = self.text_a_column
if self.test_text_b_column is None:
self.test_text_b_column = self.text_b_column
return self._create_examples(
self._read_tsv(os.path.join(data_dir, self.test_file)), "test")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0 and self.contains_header and set_type != "test":
continue
if i == 0 and self.test_contains_header and set_type == "test":
continue
guid = "%s-%s" % (set_type, i)
a_column = (
self.text_a_column if set_type != "test" else self.test_text_a_column)
b_column = (
self.text_b_column if set_type != "test" else self.test_text_b_column)
# there are some incomplete lines in QNLI
if len(line) <= a_column:
logging.warning("Incomplete line, ignored.")
continue
text_a = line[a_column]
if b_column is not None:
if len(line) <= b_column:
logging.warning("Incomplete line, ignored.")
continue
text_b = line[b_column]
else:
text_b = None
if set_type == "test":
label = self.get_labels()[0]
else:
if len(line) <= self.label_column:
logging.warning("Incomplete line, ignored.")
continue
label = line[self.label_column]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class Yelp5Processor(DataProcessor):
"""Yelp5Processor."""
def get_train_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "train.csv"))
def get_dev_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "test.csv"))
def get_labels(self):
"""See base class."""
return ["1", "2", "3", "4", "5"]
def _create_examples(self, input_file):
"""Creates examples for the training and dev sets."""
examples = []
with tf.io.gfile.GFile(input_file) as f:
reader = csv.reader(f)
for i, line in enumerate(reader):
label = line[0]
text_a = line[1].replace('""', '"').replace('\\"', '"')
examples.append(
InputExample(guid=str(i), text_a=text_a, text_b=None, label=label))
return examples
class ImdbProcessor(DataProcessor):
"""ImdbProcessor."""
def get_labels(self):
return ["neg", "pos"]
def get_train_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "train"))
def get_dev_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "test"))
def _create_examples(self, data_dir):
"""Creates examples."""
examples = []
for label in ["neg", "pos"]:
cur_dir = os.path.join(data_dir, label)
for filename in tf.io.gfile.listdir(cur_dir):
if not filename.endswith("txt"):
continue
if len(examples) % 1000 == 0:
logging.info("Loading dev example %d", len(examples))
path = os.path.join(cur_dir, filename)
with tf.io.gfile.GFile(path) as f:
text = f.read().strip().replace("<br />", " ")
examples.append(
InputExample(
guid="unused_id", text_a=text, text_b=None, label=label))
return examples
class MnliMatchedProcessor(GLUEProcessor):
"""MnliMatchedProcessor."""
def __init__(self):
super(MnliMatchedProcessor, self).__init__()
self.dev_file = "dev_matched.tsv"
self.test_file = "test_matched.tsv"
self.label_column = -1
self.text_a_column = 8
self.text_b_column = 9
def get_labels(self):
return ["contradiction", "entailment", "neutral"]
class MnliMismatchedProcessor(MnliMatchedProcessor):
def __init__(self):
super(MnliMismatchedProcessor, self).__init__()
self.dev_file = "dev_mismatched.tsv"
self.test_file = "test_mismatched.tsv"
class StsbProcessor(GLUEProcessor):
"""StsbProcessor."""
def __init__(self):
super(StsbProcessor, self).__init__()
self.label_column = 9
self.text_a_column = 7
self.text_b_column = 8
def get_labels(self):
return [0.0]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0 and self.contains_header and set_type != "test":
continue
if i == 0 and self.test_contains_header and set_type == "test":
continue
guid = "%s-%s" % (set_type, i)
a_column = (
self.text_a_column if set_type != "test" else self.test_text_a_column)
b_column = (
self.text_b_column if set_type != "test" else self.test_text_b_column)
# there are some incomplete lines in QNLI
if len(line) <= a_column:
logging.warning("Incomplete line, ignored.")
continue
text_a = line[a_column]
if b_column is not None:
if len(line) <= b_column:
logging.warning("Incomplete line, ignored.")
continue
text_b = line[b_column]
else:
text_b = None
if set_type == "test":
label = self.get_labels()[0]
else:
if len(line) <= self.label_column:
logging.warning("Incomplete line, ignored.")
continue
label = float(line[self.label_column])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def file_based_convert_examples_to_features(examples,
label_list,
max_seq_length,
tokenize_fn,
output_file,
num_passes=1):
"""Convert a set of `InputExample`s to a TFRecord file."""
# do not create duplicated records
if tf.io.gfile.exists(output_file) and not FLAGS.overwrite_data:
logging.info("Do not overwrite tfrecord %s exists.", output_file)
return
logging.info("Create new tfrecord %s.", output_file)
writer = tf.io.TFRecordWriter(output_file)
examples *= num_passes
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
logging.info("Writing example %d of %d", ex_index, len(examples))
feature = classifier_utils.convert_single_example(ex_index, example,
label_list,
max_seq_length,
tokenize_fn,
FLAGS.use_bert_format)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
def create_float_feature(values):
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_float_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
if label_list is not None:
features["label_ids"] = create_int_feature([feature.label_id])
else:
features["label_ids"] = create_float_feature([float(feature.label_id)])
features["is_real_example"] = create_int_feature(
[int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def main(_):
logging.set_verbosity(logging.INFO)
processors = {
"mnli_matched": MnliMatchedProcessor,
"mnli_mismatched": MnliMismatchedProcessor,
"sts-b": StsbProcessor,
"imdb": ImdbProcessor,
"yelp5": Yelp5Processor
}
task_name = FLAGS.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
label_list = processor.get_labels() if not FLAGS.is_regression else None
sp = spm.SentencePieceProcessor()
sp.Load(FLAGS.spiece_model_file)
def tokenize_fn(text):
text = preprocess_utils.preprocess_text(text, lower=FLAGS.uncased)
return preprocess_utils.encode_ids(sp, text)
spm_basename = os.path.basename(FLAGS.spiece_model_file)
train_file_base = "{}.len-{}.train.tf_record".format(spm_basename,
FLAGS.max_seq_length)
train_file = os.path.join(FLAGS.output_dir, train_file_base)
logging.info("Use tfrecord file %s", train_file)
train_examples = processor.get_train_examples(FLAGS.data_dir)
np.random.shuffle(train_examples)
logging.info("Num of train samples: %d", len(train_examples))
file_based_convert_examples_to_features(train_examples, label_list,
FLAGS.max_seq_length, tokenize_fn,
train_file, FLAGS.num_passes)
if FLAGS.eval_split == "dev":
eval_examples = processor.get_dev_examples(FLAGS.data_dir)
else:
eval_examples = processor.get_test_examples(FLAGS.data_dir)
logging.info("Num of eval samples: %d", len(eval_examples))
# TPU requires a fixed batch size for all batches, therefore the number
# of examples must be a multiple of the batch size, or else examples
# will get dropped. So we pad with fake examples which are ignored
# later on. These do NOT count towards the metric (all tf.metrics
# support a per-instance weight, and these get a weight of 0.0).
#
# Modified in XL: We also adopt the same mechanism for GPUs.
while len(eval_examples) % FLAGS.eval_batch_size != 0:
eval_examples.append(classifier_utils.PaddingInputExample())
eval_file_base = "{}.len-{}.{}.eval.tf_record".format(spm_basename,
FLAGS.max_seq_length,
FLAGS.eval_split)
eval_file = os.path.join(FLAGS.output_dir, eval_file_base)
file_based_convert_examples_to_features(eval_examples, label_list,
FLAGS.max_seq_length, tokenize_fn,
eval_file)
if __name__ == "__main__":
app.run(main)