-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_forest_classifier.rb
46 lines (37 loc) · 1.13 KB
/
random_forest_classifier.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# ~/lib/ruby/random_forest_classifier.rb
#
# See: https://www.fastruby.io/blog/introduction-to-random-forests.html?ck_subscriber_id=791584073
require_relative "decision_tree"
class RandomForestClassifier
attr_accessor :n_trees, :max_depth, :trees
def initialize(n_trees, max_depth)
@n_trees = n_trees
@max_depth = max_depth
@trees = []
end
def train(data, labels)
@n_trees.times do
tree = DecisionTree.new
bootstrapped_data, bootstrapped_labels = bootstrap_sample(data, labels)
tree.train(bootstrapped_data, bootstrapped_labels, @max_depth)
@trees << tree
end
end
def predict(sample)
predictions = @trees.map { |tree| tree.predict(sample, nil) }.compact
return nil if predictions.empty?
predictions.group_by(&:itself).values.max_by(&:size).first
end
private
def bootstrap_sample(data, labels)
bootstrapped_data = []
bootstrapped_labels = []
n_samples = data.length
n_samples.times do
index = rand(n_samples)
bootstrapped_data << data[index]
bootstrapped_labels << labels[index]
end
[bootstrapped_data, bootstrapped_labels]
end
end