-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation.py
98 lines (74 loc) · 3.05 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from typing import List, Dict, Union
import simpy
import pandas as pd
import pybamm
class SimpleBattery:
def __init__(self, capacity, soc=0):
self.capacity = capacity
self.soc = soc
def update(self, energy):
self.soc += energy
excess_energy = 0
if self.soc < 0:
excess_energy = self.soc
self.soc = 0
elif self.soc > self.capacity:
excess_energy = self.soc - self.capacity
self.soc = self.capacity
return excess_energy
class SimpyBattery:
def __init__(self, env, capacity, soc=0):
# eventually we probably want to pass more args like the model, parameters
self.env = env
self.capacity = capacity
self.soc = soc
self.last_update = env.now
self.last_solution = None
self.parameter_values = pybamm.ParameterValues(chemistry=pybamm.parameter_sets.Chen2020)
self.model = pybamm.lithium_ion.DFN()
def update(self, power):
# copy/paste: no guarantee to what happens in this function ;)
#time_passed = self.env.now - self.last_update
if power > 0:
experiment = pybamm.Experiment([f"charge at {0.1 * power} W for 15 s"])
elif power < 0:
experiment = pybamm.Experiment([f"discharge at {-0.1 * power} W for 15 s"])
else:
return 0
sim = pybamm.Simulation(self.model, parameter_values=self.parameter_values, experiment=experiment)
sim.solve(starting_solution=self.last_solution)
#sim.solve(starting_solution=last_solution)
#last_solution = sim.solution
self.last_solution = sim.solution
d = self.last_solution['Discharge capacity [A.h]']
self.soc = self.soc + d.entries[-1]
sim.plot(['Current [A]', 'Terminal voltage [V]', 'Discharge capacity [A.h]'])
# TODO: return excess_energy if battery is full or empty?
def simulate(env: simpy.Environment,
battery: Union[SimpleBattery, SimpyBattery],
power_delta_list: List[float],
records: List[Dict]):
for power_delta in power_delta_list:
yield env.timeout(1)
excess_energy = battery.update(power_delta)
records.append({
"power_delta": power_delta,
"excess_energy": excess_energy,
"soc": battery.soc,
})
def main():
# For now let's assume the simple case of one step every second where we first (dis)charge and then implicitly read.
# Later we can extend this to a more asynchronous charge/discharge/read pattern with different processes if we want
power_delta_list = [1, -3, 2, 3, 4, -2]
records = [] # log of some infos for later analysis
env = simpy.Environment()
# battery = SimpleBattery(capacity=1)
battery = SimpyBattery(env, capacity=1)
env.process(simulate(env, battery, power_delta_list, records))
env.run()
result = pd.DataFrame(records)
with open("result.csv", "w") as f:
f.write(result.to_csv())
print(result)
if __name__ == '__main__':
main()