forked from borgesnogueira/ZebTrack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
peakfinder.m
322 lines (296 loc) · 10.8 KB
/
peakfinder.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
function varargout = peakfinder(x0, sel, thresh, extrema, includeEndpoints, interpolate)
%PEAKFINDER Noise tolerant fast peak finding algorithm
% INPUTS:
% x0 - A real vector from the maxima will be found (required)
% sel - The amount above surrounding data for a peak to be,
% identified (default = (max(x0)-min(x0))/4). Larger values mean
% the algorithm is more selective in finding peaks.
% thresh - A threshold value which peaks must be larger than to be
% maxima or smaller than to be minima.
% extrema - 1 if maxima are desired, -1 if minima are desired
% (default = maxima, 1)
% includeEndpoints - If true the endpoints will be included as
% possible extrema otherwise they will not be included
% (default = true)
% interpolate - If true quadratic interpolation will be performed
% around each extrema to estimate the magnitude and the
% position of the peak in terms of fractional indicies. Note that
% unlike the rest of this function interpolation assumes the
% input is equally spaced. To recover the x_values of the input
% rather than the fractional indicies you can do:
% peakX = x0 + (peakLoc - 1) * dx
% where x0 is the first x value and dx is the spacing of the
% vector. Output peakMag to recover interpolated magnitudes.
% See example 2 for more information.
% (default = false)
%
% OUTPUTS:
% peakLoc - The indicies of the identified peaks in x0
% peakMag - The magnitude of the identified peaks
%
% [peakLoc] = peakfinder(x0) returns the indicies of local maxima that
% are at least 1/4 the range of the data above surrounding data.
%
% [peakLoc] = peakfinder(x0,sel) returns the indicies of local maxima
% that are at least sel above surrounding data.
%
% [peakLoc] = peakfinder(x0,sel,thresh) returns the indicies of local
% maxima that are at least sel above surrounding data and larger
% (smaller) than thresh if you are finding maxima (minima).
%
% [peakLoc] = peakfinder(x0,sel,thresh,extrema) returns the maxima of the
% data if extrema > 0 and the minima of the data if extrema < 0
%
% [peakLoc] = peakfinder(x0,sel,thresh,extrema, includeEndpoints)
% returns the endpoints as possible extrema if includeEndpoints is
% considered true in a boolean sense
%
% [peakLoc, peakMag] = peakfinder(x0,sel,thresh,extrema,interpolate)
% returns the results of results of quadratic interpolate around each
% extrema if interpolate is considered to be true in a boolean sense
%
% [peakLoc, peakMag] = peakfinder(x0,...) returns the indicies of the
% local maxima as well as the magnitudes of those maxima
%
% If called with no output the identified maxima will be plotted along
% with the input data.
%
% Note: If repeated values are found the first is identified as the peak
%
% Example 1:
% t = 0:.0001:10;
% x = 12*sin(10*2*pi*t)-3*sin(.1*2*pi*t)+randn(1,numel(t));
% x(1250:1255) = max(x);
% peakfinder(x)
%
% Example 2:
% ds = 100; % Downsample factor
% dt = .001; % Time step
% ds_dt = ds*dt; % Time delta after downsampling
% t0 = 1;
% t = t0:dt:5 + t0;
% x = 0.2-sin(0.01*2*pi*t)+3*cos(7/13*2*pi*t+.1)-2*cos((1+pi/10)*2*pi*t+0.2)-0.2*t;
% x(end) = min(x);
% x_ds = x(1:ds:end); % Downsample to test interpolation
% [minLoc, minMag] = peakfinder(x_ds, .8, 0, -1, false, true);
% minT = t0 + (minLoc - 1) * ds_dt; % Take into account 1 based indexing
% p = plot(t,x,'-',t(1:ds:end),x_ds,'o',minT,minMag,'rv');
% set(p(2:end), 'linewidth', 2); % Show the markers more clearly
% legend('Actual Data', 'Input Data', 'Estimated Peaks');
% Copyright Nathanael C. Yoder 2015 (nyoder@gmail.com)
% Perform error checking and set defaults if not passed in
error(nargchk(1,6,nargin,'struct'));
error(nargoutchk(0,2,nargout,'struct'));
s = size(x0);
flipData = s(1) < s(2);
len0 = numel(x0);
if len0 ~= s(1) && len0 ~= s(2)
error('PEAKFINDER:Input','The input data must be a vector')
elseif isempty(x0)
varargout = {[],[]};
return;
end
if ~isreal(x0)
warning('PEAKFINDER:NotReal','Absolute value of data will be used')
x0 = abs(x0);
end
if nargin < 2 || isempty(sel)
sel = (max(x0)-min(x0))/4;
elseif ~isnumeric(sel) || ~isreal(sel)
sel = (max(x0)-min(x0))/4;
warning('PEAKFINDER:InvalidSel',...
'The selectivity must be a real scalar. A selectivity of %.4g will be used',sel)
elseif numel(sel) > 1
warning('PEAKFINDER:InvalidSel',...
'The selectivity must be a scalar. The first selectivity value in the vector will be used.')
sel = sel(1);
end
if nargin < 3 || isempty(thresh)
thresh = [];
elseif ~isnumeric(thresh) || ~isreal(thresh)
thresh = [];
warning('PEAKFINDER:InvalidThreshold',...
'The threshold must be a real scalar. No threshold will be used.')
elseif numel(thresh) > 1
thresh = thresh(1);
warning('PEAKFINDER:InvalidThreshold',...
'The threshold must be a scalar. The first threshold value in the vector will be used.')
end
if nargin < 4 || isempty(extrema)
extrema = 1;
else
extrema = sign(extrema(1)); % Should only be 1 or -1 but make sure
if extrema == 0
error('PEAKFINDER:ZeroMaxima','Either 1 (for maxima) or -1 (for minima) must be input for extrema');
end
end
if nargin < 5 || isempty(includeEndpoints)
includeEndpoints = true;
else
includeEndpoints = boolean(includeEndpoints);
end
if nargin < 6 || isempty(interpolate)
interpolate = false;
else
interpolate = boolean(interpolate);
end
x0 = extrema*x0(:); % Make it so we are finding maxima regardless
thresh = thresh*extrema; % Adjust threshold according to extrema.
dx0 = diff(x0); % Find derivative
dx0(dx0 == 0) = -eps; % This is so we find the first of repeated values
ind = find(dx0(1:end-1).*dx0(2:end) < 0)+1; % Find where the derivative changes sign
% Include endpoints in potential peaks and valleys as desired
if includeEndpoints
x = [x0(1);x0(ind);x0(end)];
ind = [1;ind;len0];
minMag = min(x);
leftMin = minMag;
else
x = x0(ind);
minMag = min(x);
leftMin = min(x(1), x0(1));
end
% x only has the peaks, valleys, and possibly endpoints
len = numel(x);
if len > 2 % Function with peaks and valleys
% Set initial parameters for loop
tempMag = minMag;
foundPeak = false;
if includeEndpoints
% Deal with first point a little differently since tacked it on
% Calculate the sign of the derivative since we tacked the first
% point on it does not neccessarily alternate like the rest.
signDx = sign(diff(x(1:3)));
if signDx(1) <= 0 % The first point is larger or equal to the second
if signDx(1) == signDx(2) % Want alternating signs
x(2) = [];
ind(2) = [];
len = len-1;
end
else % First point is smaller than the second
if signDx(1) == signDx(2) % Want alternating signs
x(1) = [];
ind(1) = [];
len = len-1;
end
end
end
% Skip the first point if it is smaller so we always start on a
% maxima
if x(1) >= x(2)
ii = 0;
else
ii = 1;
end
% Preallocate max number of maxima
maxPeaks = ceil(len/2);
peakLoc = zeros(maxPeaks,1);
peakMag = zeros(maxPeaks,1);
cInd = 1;
% Loop through extrema which should be peaks and then valleys
while ii < len
ii = ii+1; % This is a peak
% Reset peak finding if we had a peak and the next peak is bigger
% than the last or the left min was small enough to reset.
if foundPeak
tempMag = minMag;
foundPeak = false;
end
% Found new peak that was lager than temp mag and selectivity larger
% than the minimum to its left.
if x(ii) > tempMag && x(ii) > leftMin + sel
tempLoc = ii;
tempMag = x(ii);
end
% Make sure we don't iterate past the length of our vector
if ii == len
break; % We assign the last point differently out of the loop
end
ii = ii+1; % Move onto the valley
% Come down at least sel from peak
if ~foundPeak && tempMag > sel + x(ii)
foundPeak = true; % We have found a peak
leftMin = x(ii);
peakLoc(cInd) = tempLoc; % Add peak to index
peakMag(cInd) = tempMag;
cInd = cInd+1;
elseif x(ii) < leftMin % New left minima
leftMin = x(ii);
end
end
% Check end point
if includeEndpoints
if x(end) > tempMag && x(end) > leftMin + sel
peakLoc(cInd) = len;
peakMag(cInd) = x(end);
cInd = cInd + 1;
elseif ~foundPeak && tempMag > minMag % Check if we still need to add the last point
peakLoc(cInd) = tempLoc;
peakMag(cInd) = tempMag;
cInd = cInd + 1;
end
elseif ~foundPeak
if x(end) > tempMag && x(end) > leftMin + sel
peakLoc(cInd) = len;
peakMag(cInd) = x(end);
cInd = cInd + 1;
elseif tempMag > min(x0(end), x(end)) + sel
peakLoc(cInd) = tempLoc;
peakMag(cInd) = tempMag;
cInd = cInd + 1;
end
end
% Create output
if cInd > 1
peakInds = ind(peakLoc(1:cInd-1));
peakMags = peakMag(1:cInd-1);
else
peakInds = [];
peakMags = [];
end
else % This is a monotone function where an endpoint is the only peak
[peakMags,xInd] = max(x);
if includeEndpoints && peakMags > minMag + sel
peakInds = ind(xInd);
else
peakMags = [];
peakInds = [];
end
end
% Apply threshold value. Since always finding maxima it will always be
% larger than the thresh.
if ~isempty(thresh)
m = peakMags>thresh;
peakInds = peakInds(m);
peakMags = peakMags(m);
end
if interpolate && ~isempty(peakMags)
middleMask = (peakInds > 1) & (peakInds < len0);
noEnds = peakInds(middleMask);
magDiff = x0(noEnds + 1) - x0(noEnds - 1);
magSum = x0(noEnds - 1) + x0(noEnds + 1) - 2 * x0(noEnds);
magRatio = magDiff ./ magSum;
peakInds(middleMask) = peakInds(middleMask) - magRatio/2;
peakMags(middleMask) = peakMags(middleMask) - magRatio .* magDiff/8;
end
% Rotate data if needed
if flipData
peakMags = peakMags.';
peakInds = peakInds.';
end
% Change sign of data if was finding minima
if extrema < 0
peakMags = -peakMags;
x0 = -x0;
end
% Plot if no output desired
if nargout == 0
if isempty(peakInds)
disp('No significant peaks found')
else
figure;
plot(1:len0,x0,'.-',peakInds,peakMags,'ro','linewidth',2);
end
else
varargout = {peakInds,peakMags};
end