-
Notifications
You must be signed in to change notification settings - Fork 1
/
metric.py
211 lines (175 loc) · 6.35 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
import logging
import time, datetime
from collections import defaultdict, deque
import utils
import torch.distributed as dist
from itertools import islice
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=None, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def sync(self):
if not utils.is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device=torch.device("cuda:"+str(torch.cuda.current_device())))
dist.all_reduce(t, op=dist.ReduceOp.SUM, async_op=False)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, logger, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
self.logger = logger
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def add_meter(self, name, meter):
self.meters[name] = meter
def sync(self):
for meter in self.meters.values():
meter.sync()
def log_every(self, iterable, log_freq, header=None, iterations=None):
iterations = len(iterable) if iterations is None else iterations
if self.logger is None:
for i, obj in enumerate(islice(iterable, 0, iterations)):
yield i, obj
return
header = '' if header is None else header
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(iterations))) + 'd'
if torch.cuda.is_available():
log_msg = self.delimiter.join([
header,
'Iter: [{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'iter time: {time}',
'data time: {data}',
'gpu mem: {memory:.0f}MB'
])
else:
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'iter time: {time}',
'data time: {data}'
])
MB = 1024.0 * 1024.0
for i, obj in enumerate(islice(iterable, 0, iterations)):
data_time.update(time.time() - end)
yield i, obj
iter_time.update(time.time() - end)
if i == iterations - 1 or i % log_freq == 0:
eta_seconds = iter_time.global_avg * (iterations - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
self.logger.info(log_msg.format(
i+1, iterations, eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.memory_reserved() / MB))
else:
self.logger.info(log_msg.format(
i+1, iterations, eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
end_msg = self.delimiter.join([
header,
'Total time: {0} ({1:.4f} s / it)'
])
self.logger.info(end_msg.format(total_time_str, total_time / iterations))
class MetricScorer:
def __init__(self, k=0):
self.k = k
def score(self, sorted_labels):
return 0.0
def getLength(self, sorted_labels):
length = self.k
if length > len(sorted_labels) or length <= 0:
length = len(sorted_labels)
return length
def name(self):
if self.k > 0:
return "%s@%d" % (self.__class__.__name__.replace("Scorer",""), self.k)
return self.__class__.__name__.replace("Scorer","")
def setLength(self, k):
self.k = k;
class APScorer(MetricScorer):
def __init__(self, k=0):
MetricScorer.__init__(self, k)
def score(self, sorted_labels):
length = self.getLength(sorted_labels)
nr_relevant = len([x for x in sorted_labels[:length] if x > 0])
if nr_relevant == 0:
return 0.0
ap = 0.0
rel = 0
for i in range(length):
lab = sorted_labels[i]
if lab > 0:
rel += 1
ap += float(rel) / (i+1.0)
ap /= nr_relevant
return ap