-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathapp.py
370 lines (301 loc) · 10.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
from functools import partial
import torch
import numpy as np
import gradio as gr
from demo.model import TMR_text_encoder
from demo.load import load_unit_embeddings, load_splits, load_json
import argparse
# parser for the model
parser = argparse.ArgumentParser()
parser.add_argument("--run_dir", default="models/tmr_humanml3d_guoh3dfeats")
args = parser.parse_args()
MODEL_PATH = args.run_dir
# For now, only compatible with the humanml3d dataset
DATASET = "humanml3d"
assert DATASET == "humanml3d"
WEBSITE = """
<div class="embed_hidden">
<h1 style='text-align: center'>TMR: Text-to-Motion Retrieval Using Contrastive 3D Human Motion Synthesis </h1>
<h2 style='text-align: center'>
<a href="https://mathis.petrovich.fr" target="_blank"><nobr>Mathis Petrovich</nobr></a>  
<a href="https://ps.is.mpg.de/~black" target="_blank"><nobr>Michael J. Black</nobr></a>  
<a href="https://imagine.enpc.fr/~varolg" target="_blank"><nobr>Gül Varol</nobr></a>
</h2>
<h2 style='text-align: center'>
<nobr>ICCV 2023</nobr>
</h2>
<h3 style="text-align:center;">
<a target="_blank" href="https://arxiv.org/abs/2305.00976"> <button type="button" class="btn btn-primary btn-lg"> Paper </button></a>
<a target="_blank" href="https://github.com/Mathux/TMR"> <button type="button" class="btn btn-primary btn-lg"> Code </button></a>
<a target="_blank" href="https://mathis.petrovich.fr/tmr"> <button type="button" class="btn btn-primary btn-lg"> Webpage </button></a>
<a target="_blank" href="https://mathis.petrovich.fr/tmr/tmr.bib"> <button type="button" class="btn btn-primary btn-lg"> BibTex </button></a>
</h3>
<h3> Description </h3>
<p>
This space illustrates <a href='https://mathis.petrovich.fr/tmr/' target='_blank'><b>TMR</b></a>, a method for text-to-motion retrieval. Given a gallery of 3D human motions (which can be unseen during training) and a text query, the goal is to search for motions which are close to the text query.
</p>
</div>
"""
EXAMPLES = [
"A person is walking slowly",
"A person is walking in a circle",
"A person is jumping rope",
"Someone is doing a backflip",
"A person is doing a moonwalk",
"A person walks forward and then turns back",
"Picking up an object",
"A person is swimming in the sea",
"A human is squatting",
"Someone is jumping with one foot",
"A person is chopping vegetables",
"Someone walks backward",
"Somebody is ascending a staircase",
"A person is sitting down",
"A person is taking the stairs",
"Someone is doing jumping jacks",
"The person walked forward and is picking up his toolbox",
"The person angrily punching the air",
]
# Show closest text in the training
# css to make videos look nice
# var(--block-border-color);
CSS = """
.retrieved_video {
position: relative;
margin: 0;
box-shadow: var(--block-shadow);
border-width: var(--block-border-width);
border-color: #000000;
border-radius: var(--block-radius);
background: var(--block-background-fill);
width: 100%;
line-height: var(--line-sm);
}
.contour_video {
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
z-index: var(--layer-5);
border-radius: var(--block-radius);
background: var(--background-fill-primary);
padding: 0 var(--size-6);
max-height: var(--size-screen-h);
overflow: hidden;
}
"""
DEFAULT_TEXT = "A person is "
def humanml3d_keyid_to_babel_rendered_url(h3d_index, amass_to_babel, keyid):
# Don't show the mirrored version of HumanMl3D
if "M" in keyid:
return None
dico = h3d_index[keyid]
path = dico["path"]
# HumanAct12 motions are not rendered online
# so we skip them for now
if "humanact12" in path:
return None
# This motion is not rendered in BABEL
# so we skip them for now
if path not in amass_to_babel:
return None
babel_id = amass_to_babel[path].zfill(6)
url = f"https://babel-renders.s3.eu-central-1.amazonaws.com/{babel_id}.mp4"
# For the demo, we retrieve from the first annotation only
ann = dico["annotations"][0]
start = ann["start"]
end = ann["end"]
text = ann["text"]
data = {
"url": url,
"start": start,
"end": end,
"text": text,
"keyid": keyid,
"babel_id": babel_id,
"path": path,
}
return data
def retrieve(
*,
model,
keyid_to_url,
unit_motion_embs,
all_keyids,
text,
keyids_index,
index_keyids,
split="test",
nmax=8,
):
keyids = [x for x in all_keyids[split] if x in keyids_index]
index = [keyids_index[x] for x in keyids]
unit_embs = unit_motion_embs[index]
scores = model.compute_scores(text, unit_embs=unit_embs)
keyids = np.array(keyids)
sorted_idxs = np.argsort(-scores)
best_keyids = keyids[sorted_idxs]
best_scores = scores[sorted_idxs]
datas = []
for keyid, score in zip(best_keyids, best_scores):
if len(datas) == nmax:
break
data = keyid_to_url(keyid)
if data is None:
continue
data["score"] = round(float(score), 2)
datas.append(data)
return datas
# HTML component
def get_video_html(data, video_id, width=700, height=700):
url = data["url"]
start = data["start"]
end = data["end"]
score = data["score"]
text = data["text"]
keyid = data["keyid"]
babel_id = data["babel_id"]
path = data["path"]
trim = f"#t={start},{end}"
title = f"""Score = {score}
Corresponding text: {text}
HumanML3D keyid: {keyid}
BABEL keyid: {babel_id}
AMASS path: {path}"""
# class="wrap default svelte-gjihhp hide"
# <div class="contour_video" style="position: absolute; padding: 10px;">
# width="{width}" height="{height}"
video_html = f"""
<video class="retrieved_video" width="{width}" height="{height}" preload="auto" muted playsinline onpause="this.load()"
autoplay loop disablepictureinpicture id="{video_id}" title="{title}">
<source src="{url}{trim}" type="video/mp4">
Your browser does not support the video tag.
</video>
"""
return video_html
def retrieve_component(retrieve_function, text, splits_choice, nvids, n_component=24):
if text == DEFAULT_TEXT or text == "" or text is None:
return [None for _ in range(n_component)]
# cannot produce more than n_compoenent
nvids = min(nvids, n_component)
if "Unseen" in splits_choice:
split = "test"
else:
split = "all"
datas = retrieve_function(text=text, split=split, nmax=nvids)
htmls = [get_video_html(data, idx) for idx, data in enumerate(datas)]
# get n_component exactly if asked less
# pad with dummy blocks
htmls = htmls + [None for _ in range(max(0, n_component - nvids))]
return htmls
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# LOADING
model = TMR_text_encoder(MODEL_PATH).to(device)
unit_motion_embs, keyids_index, index_keyids = load_unit_embeddings(
MODEL_PATH, DATASET, device
)
all_keyids = load_splits(DATASET, splits=["test", "all"])
h3d_index = load_json(f"datasets/annotations/{DATASET}/annotations.json")
amass_to_babel = load_json("demo/amass_to_babel.json")
keyid_to_url = partial(humanml3d_keyid_to_babel_rendered_url, h3d_index, amass_to_babel)
retrieve_function = partial(
retrieve,
model=model,
keyid_to_url=keyid_to_url,
unit_motion_embs=unit_motion_embs,
all_keyids=all_keyids,
keyids_index=keyids_index,
index_keyids=index_keyids,
)
# DEMO
theme = gr.themes.Default(primary_hue="blue", secondary_hue="gray")
retrieve_and_show = partial(retrieve_component, retrieve_function)
with gr.Blocks(css=CSS, theme=theme) as demo:
gr.Markdown(WEBSITE)
videos = []
with gr.Row():
with gr.Column(scale=3):
with gr.Column(scale=2):
text = gr.Textbox(
placeholder="Type the motion you want to search with a sentence",
show_label=True,
label="Text prompt",
value=DEFAULT_TEXT,
)
with gr.Column(scale=1):
btn = gr.Button("Retrieve", variant="primary")
clear = gr.Button("Clear", variant="secondary")
with gr.Row():
with gr.Column(scale=1):
splits_choice = gr.Radio(
["All motions", "Unseen motions"],
label="Gallery of motion",
value="All motions",
info="The motion gallery is coming from HumanML3D",
)
with gr.Column(scale=1):
# nvideo_slider = gr.Slider(minimum=4, maximum=24, step=4, value=8, label="Number of videos")
nvideo_slider = gr.Radio(
[4, 8, 12, 16, 24],
label="Videos",
value=8,
info="Number of videos to display",
)
with gr.Column(scale=2):
def retrieve_example(text, splits_choice, nvideo_slider):
return retrieve_and_show(text, splits_choice, nvideo_slider)
examples = gr.Examples(
examples=[[x, None, None] for x in EXAMPLES],
inputs=[text, splits_choice, nvideo_slider],
examples_per_page=20,
run_on_click=False,
cache_examples=False,
fn=retrieve_example,
outputs=[],
)
i = -1
# should indent
for _ in range(6):
with gr.Row():
for _ in range(4):
i += 1
video = gr.HTML()
videos.append(video)
# connect the examples to the output
# a bit hacky
examples.outputs = videos
def load_example(example_id):
processed_example = examples.non_none_processed_examples[example_id]
return gr.utils.resolve_singleton(processed_example)
examples.dataset.click(
load_example,
inputs=[examples.dataset],
outputs=examples.inputs_with_examples, # type: ignore
show_progress=False,
postprocess=False,
queue=False,
).then(fn=retrieve_example, inputs=examples.inputs, outputs=videos)
btn.click(
fn=retrieve_and_show,
inputs=[text, splits_choice, nvideo_slider],
outputs=videos,
)
text.submit(
fn=retrieve_and_show,
inputs=[text, splits_choice, nvideo_slider],
outputs=videos,
)
splits_choice.change(
fn=retrieve_and_show,
inputs=[text, splits_choice, nvideo_slider],
outputs=videos,
)
nvideo_slider.change(
fn=retrieve_and_show,
inputs=[text, splits_choice, nvideo_slider],
outputs=videos,
)
def clear_videos():
return [None for x in range(24)] + [DEFAULT_TEXT]
clear.click(fn=clear_videos, outputs=videos + [text])
demo.launch(share=True)