forked from isht7/pytorch-deeplab-resnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deeplab_resnet2.py
314 lines (261 loc) · 11.9 KB
/
deeplab_resnet2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import torch.nn as nn
import torch.nn.functional as F
#import math
import torch.utils.model_zoo as model_zoo
import torch
import numpy as np
from copy import deepcopy
affine_par = True
def outS(i):
i = int(i)
i = (i+1)/2
i = int(np.ceil((i+1)/2.0))
i = (i+1)/2
return i
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes, affine = affine_par)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes, affine = affine_par)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, dilation_ = 1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change
self.bn1 = nn.BatchNorm2d(planes,affine = affine_par)
for i in self.bn1.parameters():
i.requires_grad = False
padding = 1
if dilation_ == 2:
padding = 2
elif dilation_ == 4:
padding = 4
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change
padding=padding, bias=False, dilation = dilation_)
self.bn2 = nn.BatchNorm2d(planes,affine = affine_par)
for i in self.bn2.parameters():
i.requires_grad = False
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4, affine = affine_par)
for i in self.bn3.parameters():
i.requires_grad = False
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Classifier_Module(nn.Module):
def __init__(self,dilation_series,padding_series,NoLabels):
super(Classifier_Module, self).__init__()
self.conv2d_list = nn.ModuleList()
for dilation,padding in zip(dilation_series,padding_series):
self.conv2d_list.append(nn.Conv2d(2048,NoLabels,kernel_size=3,stride=1, padding =padding, dilation = dilation,bias = True))
for m in self.conv2d_list:
m.weight.data.normal_(0, 0.01)
def forward(self, x):
out = self.conv2d_list[0](x)
for i in range(len(self.conv2d_list)-1):
out += self.conv2d_list[i+1](x)
return out
# Pyramid Pooling Module
class PPM(nn.Module):
def __init__(self,NoLabels):
super(PPM,self).__init__()
self.conv2d_list = nn.ModuleList()
for i in (1,2,3,6):
pool = nn.AdaptiveAvgPool2d(output_size=i)
conv = nn.Conv2d(in_channels = 2048, out_channels = 512, kernel_size = 1)
self.conv2d_list.append(nn.Sequential(pool,conv))
self.conv2d = nn.Conv2d(in_channels = 4096, out_channels = NoLabels, kernel_size = 1)
def forward(self,x):
concat = x
for i in range(len(self.conv2d_list)):
level = F.upsample(input = self.conv2d_list[i](x), size = (x.size(2), x.size(3)), mode = 'bilinear')
concat = torch.cat((concat, level), dim = 1)
out = self.conv2d(concat)
return out
class PSPModule(nn.Module):
"""
Pyramid Scene Parsing module
"""
def __init__(self, in_features=2048, out_features=512, sizes=(1, 2, 3, 6), n_classes=1):
super(PSPModule, self).__init__()
self.stages = []
self.stages = nn.ModuleList([self._make_stage_1(in_features, size) for size in sizes])
self.bottleneck = self._make_stage_2(in_features * (len(sizes)//4 + 1), out_features)
self.relu = nn.ReLU()
self.final = nn.Conv2d(out_features, n_classes, kernel_size=1)
def _make_stage_1(self, in_features, size):
prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
conv = nn.Conv2d(in_features, in_features//4, kernel_size=1, bias=False)
bn = nn.BatchNorm2d(in_features//4, affine=affine_par)
relu = nn.ReLU(inplace=True)
return nn.Sequential(prior, conv, bn, relu)
def _make_stage_2(self, in_features, out_features):
conv = nn.Conv2d(in_features, out_features, kernel_size=1, bias=False)
bn = nn.BatchNorm2d(out_features, affine=affine_par)
relu = nn.ReLU(inplace=True)
return nn.Sequential(conv, bn, relu)
def forward(self, feats):
h, w = feats.size(2), feats.size(3)
priors = [F.upsample(input=stage(feats), size=(h, w), mode='bilinear') for stage in self.stages]
priors.append(feats)
bottle = self.relu(self.bottleneck(torch.cat(priors, 1)))
out = self.final(bottle)
return out
class ResNet(nn.Module):
def __init__(self, block, layers,NoLabels, psp = False):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64,affine = affine_par)
for i in self.bn1.parameters():
i.requires_grad = False
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation__ = 2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation__ = 4)
if not psp:
self.layer5 = self._make_pred_layer(Classifier_Module, [6,12,18,24],[6,12,18,24],NoLabels)
else:
self.layer5 = PSPModule(n_classes=NoLabels)
#self.layer5 = PPM(NoLabels)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, 0.01)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
# for i in m.parameters():
# i.requires_grad = False
def _make_layer(self, block, planes, blocks, stride=1,dilation__ = 1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion or dilation__ == 2 or dilation__ == 4:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion,affine = affine_par),
)
for i in downsample._modules['1'].parameters():
i.requires_grad = False
layers = []
layers.append(block(self.inplanes, planes, stride,dilation_=dilation__, downsample = downsample ))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes,dilation_=dilation__))
return nn.Sequential(*layers)
def _make_pred_layer(self,block, dilation_series, padding_series,NoLabels):
return block(dilation_series,padding_series,NoLabels)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
return x
class MS_Deeplab(nn.Module):
def __init__(self,block,NoLabels, psp = False):
super(MS_Deeplab,self).__init__()
self.Scale = ResNet(block,[3, 4, 23, 3],NoLabels, psp) #changed to fix #4
self.psp = psp
def forward(self,x):
if not self.psp:
input_size = x.size()[2]
self.interp1 = nn.Upsample(size = (int(input_size*0.75)+1,int(input_size*0.75)+1),mode='bilinear')
self.interp2 = nn.Upsample(size = (int(input_size*0.5)+1,int(input_size*0.5)+1),mode='bilinear')
self.interp3 = nn.Upsample(size = (outS(input_size),outS(input_size)),mode='bilinear')
out = []
x2 = self.interp1(x)
x3 = self.interp2(x)
out.append(self.Scale(x)) # for original scale
out.append(self.interp3(self.Scale(x2))) # for 0.75x scale
out.append(self.Scale(x3)) # for 0.5x scale
x2Out_interp = out[1]
x3Out_interp = self.interp3(out[2])
temp1 = torch.max(out[0],x2Out_interp)
out.append(torch.max(temp1,x3Out_interp))
return out
else:
x = self.Scale(x)
out = []
out.append(x)
return out
def load_pretrained_ms(self, base_network, nInputChannels=3):
flag = 0
for container, container_ori in zip(self.Scale.modules(), base_network.modules()):
for module, module_ori in zip(container.modules(), container_ori.modules()):
#if isinstance(module, nn.Conv2d):
#assert(3 == 4)
# assert(True)
#if isinstance(module_ori, nn.Conv2d):
#assert(5 == 6)
# assert(True)
#if isinstance(module, nn.Conv2d) and isinstance(module_ori, nn.Conv2d):
# assert(7 == 8)
if isinstance(module, nn.Conv2d) and isinstance(module_ori, nn.Conv2d):
if not flag and nInputChannels != 3:
module.weight[:, :3, :, :].data = deepcopy(module_ori.weight.data)
module.bias = deepcopy(module_ori.bias)
for i in range(3, int(module.weight.data.shape[1])):
module.weight[:, i, :, :].data = deepcopy(module_ori.weight[:, -1, :, :][:, np.newaxis, :, :].data)
flag = 1
elif module.weight.data.shape == module_ori.weight.data.shape:
print('Updating convolutional layer')
module.weight = deepcopy(module_ori.weight)
module.bias = deepcopy(module_ori.bias)
else:
print('Skipping Conv layer with size: {} and target size: {}'
.format(module.weight.data.shape, module_ori.weight.data.shape))
elif isinstance(module, nn.BatchNorm2d) and isinstance(module_ori, nn.BatchNorm2d) \
and module.weight.data.shape == module_ori.weight.data.shape:
print('Updating batchnorm layer')
module.weight.data = deepcopy(module_ori.weight.data)
module.bias.data = deepcopy(module_ori.bias.data)
def Res_Deeplab(NoLabels=21, psp=False):
model = MS_Deeplab(Bottleneck,NoLabels, psp)
#model = PSP(Bottleneck,NoLabels)
#model = ResNet(block,[3, 4, 23, 3],NoLabels)
return model