-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
165 lines (126 loc) · 5.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
from torch import optim, nn, autograd
from torchvision import models, transforms
import os
import utils
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from argparse import ArgumentParser
class GoogLeNet(nn.Module):
def __init__(self):
super(GoogLeNet, self).__init__()
lenet = models.googlenet(pretrained=True)
self.conv1 = lenet.conv1
self.maxpool1 = lenet.maxpool1
self.conv2 = lenet.conv2
self.conv3 = lenet.conv3
self.maxpool2 = lenet.maxpool2
self.inception3a = lenet.inception3a
self.inception3b = lenet.inception3b
self.maxpool3 = lenet.maxpool3
self.inception4a = lenet.inception4a
self.inception4b = lenet.inception4b
self.inception4c = lenet.inception4c
self.inception4d = lenet.inception4d
self.inception4e = lenet.inception4e
self.maxpool4 = lenet.maxpool4
self.inception5a = lenet.inception5a
self.inception5b = lenet.inception5b
self.avgpool = lenet.avgpool
self.dropout = lenet.dropout
self.layers = [
self.conv1, self.maxpool1, self.conv2, self.conv3, self.maxpool2,
self.inception3a, self.inception3b, self.maxpool3,
self.inception4a, self.inception4b, self.inception4c, self.inception4d, self.inception4e, self.maxpool4,
self.inception5a, self.inception5b,
self.avgpool, self.dropout
]
for p in self.parameters():
p.requires_grad_(False)
def forward(self, x, layer_n=10):
h = x
for i in range(layer_n):
h = self.layers[i](h)
return h
def l2_norm(actvs):
return torch.sqrt(torch.sum(actvs.pow(2)))
def dreamchapter(model, img, lr=0.01, iters=20, verbose=True, interval=5, jitter=32, layer_n=10):
plt.ion()
for i in range(iters):
with torch.no_grad():
rx, ry = torch.randint(-jitter, jitter+1, (2,))
img = torch.roll(img, (rx, ry), (-1, -2))
img.requires_grad_(True)
actvs = model(utils.norm(img), layer_n)
lss = l2_norm(actvs)
lss.backward()
with torch.no_grad():
img += lr / torch.abs(img.grad).mean() * img.grad
img.grad.zero_()
img = utils.clip(img)
img = torch.roll(img, (-rx, -ry), (-1, -2))
if verbose and (i % interval == 0):
plt.imshow(utils.to_img(img))
plt.title('Partial-Dream[iter#{:04d}]'.format(i))
plt.pause(1e-3)
plt.close('all')
plt.ioff()
return img
def deepdream(model, imgp, n_octaves=10, octave_scale=1.4, lr=0.01, iters=20, verbose=True, interval=5, layer_n=10):
model.eval()
img = utils.load_img(imgp)
octaves = [img]
for _ in range(n_octaves - 1):
octaves.append(utils.zoom(octaves[-1], octave_scale))
detail = torch.zeros(*octaves[-1].size()).cuda()
for i, octave in enumerate(octaves[::-1]):
if i > 0:
detail = utils.unzoom(detail, octave.size()[2:])
currn_img = octave + detail
dream_img = dreamchapter(model, currn_img, lr=lr, iters=iters, verbose=verbose, interval=interval, layer_n=layer_n)
detail = dream_img - octave
return dream_img
def main():
parser = ArgumentParser()
parser.add_argument('-b', '--base-img', type=str, dest='base_img', required=True, help='Path to the base image ... ')
parser.add_argument('-d', '--destination', type=str, dest='destination', help='Path for the final image ... ')
parser.add_argument('-n', '--n-octaves', type=int, dest='n_octaves', default=10, help='Amount of octaves ... ')
parser.add_argument('-s', '--octave-scale', type=float, dest='octave_scale', default=1.4, help='The octave scaling factor ... ')
parser.add_argument('--lr', type=float, dest='lr', default=0.01, help='Learning rate / step size ... ')
parser.add_argument('--iters', type=int, dest='iters', default=10, help='Amount of iterations per octave ... ')
parser.add_argument('--layer-n', type=int, dest='layer_n', default=10, help='Layer-activation to maximize [1;18] ... ')
parser.add_argument('-v', '--verbose', action='store_true', dest='verbose', default=False, help='Flag; Verbose?')
parser.add_argument('-i', '--interval', type=int, dest='interval', default=5,
help='Interval for displaying intermediate results ... ')
args = parser.parse_args()
if not os.path.isfile(args.base_img):
print('[-] Base-Image doesn\'t exist ... ({:})'.format(args.base_img))
os._exit(1)
if args.destination and (
os.path.isfile(args.destination) or
not os.path.isdir(os.path.dirname(args.destination))
):
print('[-] Final path either already present, or un-reachable ... ({:})'.format(args.destination))
os._exit(1)
model = GoogLeNet()
model = model.cuda()
dream = deepdream(model, args.base_img, n_octaves=args.n_octaves, octave_scale=args.octave_scale,
lr=args.lr, iters=args.iters, verbose=args.verbose, interval=args.interval, layer_n=args.layer_n)
plt.imshow(utils.to_img(dream))
plt.title('Deep-Dream')
plt.show()
if not args.destination:
yN = input('Save image? [y/N] ')
if yN in ['y', 'Y']:
path = ''
while (
os.path.isfile(path) or
not os.path.isdir(os.path.dirname(path))
):
path = input('Enter path: ')
utils.save_img(dream, path)
else:
utils.save_img(dream, args.destination)
if __name__ == '__main__':
main()