-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmodel.py
478 lines (364 loc) · 17.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# Copyright 2014 Matthieu Courbariaux
# This file is part of deep-learning-multipliers.
# deep-learning-multipliers is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# deep-learning-multipliers is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with deep-learning-multipliers. If not, see <http://www.gnu.org/licenses/>.
import gzip
import cPickle
import numpy as np
import os
import os.path
import sys
import theano
import theano.tensor as T
import time
from layer import Maxout_conv_layer, SoftmaxLayer, MaxoutLayer
class deep_dropout_network(object):
layer = []
def __init__(self, rng, batch_size, n_hidden_layers, comp_precision, update_precision,
initial_range, max_overflow, format):
print ' Overall description:'
print ' Batch size = %i' %(batch_size)
print ' Number of layers = %i' %(n_hidden_layers)
print ' Computation precision = %i bits' %(comp_precision)
print ' Update precision = %i bits' %(update_precision)
print ' Initial range = %i bits' %(initial_range)
print ' Maximum overflow rate = %f %%' %(max_overflow*100)
print " Format = " + format
self.rng = rng
self.batch_size = batch_size
self.n_hidden_layers = n_hidden_layers
self.comp_precision = comp_precision
self.update_precision = update_precision
self.initial_range = initial_range
self.max_overflow = max_overflow
self.format = format
def fprop(self, x):
y = self.layer[0].fprop(x)
for k in range(1,self.n_hidden_layers+1):
y = self.layer[k].fprop(y)
return y
def dropout_fprop(self, x):
y = self.layer[0].dropout_fprop(x)
for k in range(1,self.n_hidden_layers+1):
y = self.layer[k].dropout_fprop(y)
return y
# when you use fixed point, you cannot use T.grad directly -> bprop modifications.
def bprop(self, y, t):
# there is a simplification between softmax derivative and nll derivative
dEdy = (y-t)/T.cast(T.shape(y)[1],dtype=theano.config.floatX) # /2. # actually, it is dEdz and not dEdy
# bprop
for k in range(self.n_hidden_layers,-1,-1):
dEdy = self.layer[k].bprop(dEdy)
# you give it the input and the target and it gives you the updates
def parameter_updates(self, LR, M):
# updates
parameter_updates = self.layer[0].parameter_updates(LR, M)
for k in range(1,self.n_hidden_layers+1):
parameter_updates = parameter_updates + self.layer[k].parameter_updates(LR, M)
return parameter_updates
# function that updates the ranges of all fixed point vectors
def range_updates(self,batch_count):
range_updates = self.layer[0].range_updates(batch_count)
for k in range(1,self.n_hidden_layers+1):
range_updates = range_updates + self.layer[k].range_updates(batch_count)
return range_updates
# function that updates the ranges of all fixed point vectors
def overflow_updates(self):
overflow_updates = self.layer[0].overflow_updates()
for k in range(1,self.n_hidden_layers+1):
overflow_updates = overflow_updates + self.layer[k].overflow_updates()
return overflow_updates
# train function
def updates(self, x, t, LR, M):
y = self.dropout_fprop(x)
self.bprop(y,t)
updates = self.parameter_updates(LR,M)
if self.format == "DFXP":
updates += self.overflow_updates()
return updates
def errors(self, x, t):
y = self.fprop(x)
# error function
errors = T.sum(T.neq(T.argmax(y, axis=1), T.argmax(t, axis=1)))
return errors
def save_params(self):
self.W_save = []
self.b_save = []
for k in xrange(self.n_hidden_layers+1):
self.W_save.append(self.layer[k].W.get_value(borrow=False))
self.b_save.append(self.layer[k].b.get_value(borrow=False))
def load_params(self):
# read an load all the parameters
for k in xrange(self.n_hidden_layers+1):
self.layer[k].W.set_value(self.W_save[k])
self.layer[k].b.set_value(self.b_save[k])
def save_params_file(self, path):
# Open the file and overwrite current contents
save_file = open(path, 'wb')
# write all the parameters in the file
for k in xrange(self.n_hidden_layers+1):
cPickle.dump(self.layer[k].W.get_value(), save_file, -1)
cPickle.dump(self.layer[k].b.get_value(), save_file, -1)
# close the file
save_file.close()
def load_params_file(self, path):
# Open the file
save_file = open(path)
# read an load all the parameters
for k in xrange(self.n_hidden_layers+1):
self.layer[k].W.set_value(cPickle.load(save_file))
self.layer[k].b.set_value(cPickle.load(save_file))
# close the file
save_file.close()
def print_range(self):
for k in xrange(self.n_hidden_layers+1):
print ' Layer %i range:'%(k)
self.layer[k].print_range()
def set_comp_precision(self, comp_precision):
for k in xrange(self.n_hidden_layers+1):
self.layer[k].comp_precision.set_value(comp_precision)
def get_comp_precision(self):
return self.layer[0].comp_precision.get_value()
def set_update_precision(self, update_precision):
for k in xrange(self.n_hidden_layers+1):
self.layer[k].update_precision.set_value(update_precision)
def get_update_precision(self):
return self.layer[0].update_precision.get_value()
def set_max_overflow(self, max_overflow):
for k in xrange(self.n_hidden_layers+1):
self.layer[k].max_overflow.set_value(max_overflow)
def get_max_overflow(self):
return self.layer[0].max_overflow.get_value()
class PI_MNIST_model(deep_dropout_network):
def __init__(self, rng, batch_size, n_input, n_output, n_hidden, n_pieces, n_hidden_layers,
p_input, scale_input, p_hidden, scale_hidden, max_col_norm, format,
comp_precision, update_precision, initial_range, max_overflow):
deep_dropout_network.__init__(self, rng, batch_size, n_hidden_layers, comp_precision, update_precision,
initial_range, max_overflow, format)
print ' n_input = %i' %(n_input)
print ' n_output = %i' %(n_output)
print ' n_hidden = %i' %(n_hidden)
print ' n_pieces = %i' %(n_pieces)
print ' p_input = %f' %(p_input)
print ' scale_input = %f' %(scale_input)
print ' p_hidden = %f' %(p_hidden)
print ' scale_hidden = %f' %(scale_hidden)
print ' max_col_norm = %f' %(max_col_norm)
# save the parameters
self.n_input = n_input
self.n_output = n_output
self.n_hidden = n_hidden
self.n_pieces = n_pieces
self.p_input = p_input
self.scale_input = scale_input
self.p_hidden = p_hidden
self.scale_hidden = scale_hidden
self.max_col_norm = max_col_norm
# Create MLP layers
if self.n_hidden_layers == 0 :
print " Softmax layer:"
self.layer.append(SoftmaxLayer(rng = self.rng, n_inputs=self.n_input, n_units=self.n_output,
p = self.p_input, scale = self.scale_input, max_col_norm = self.max_col_norm, format = self.format,
comp_precision = self.comp_precision, update_precision = self.update_precision, initial_range = self.initial_range, max_overflow = self.max_overflow))
else :
print " Maxout layer 1:"
self.layer.append(MaxoutLayer(rng = self.rng, n_inputs = self.n_input, n_units = self.n_hidden, n_pieces = self.n_pieces,
p = self.p_input, scale = self.scale_input, max_col_norm = self.max_col_norm, format = self.format,
comp_precision = self.comp_precision, update_precision = self.update_precision, initial_range = self.initial_range, max_overflow = self.max_overflow))
for k in range(1,self.n_hidden_layers):
print " Maxout layer "+str(k+1)+":"
self.layer.append(MaxoutLayer(rng = self.rng, n_inputs = self.n_hidden, n_units = self.n_hidden, n_pieces = self.n_pieces,
p = self.p_hidden, scale = self.scale_hidden, max_col_norm = self.max_col_norm, format = self.format,
comp_precision = self.comp_precision, update_precision = self.update_precision, initial_range = self.initial_range, max_overflow = self.max_overflow))
print " Softmax layer:"
self.layer.append(SoftmaxLayer(rng = self.rng, n_inputs= self.n_hidden, n_units= self.n_output,
p = self.p_hidden, scale = self.scale_hidden, max_col_norm = self.max_col_norm, format = self.format,
comp_precision = self.comp_precision, update_precision = self.update_precision, initial_range = self.initial_range, max_overflow = self.max_overflow))
class MNIST_model(deep_dropout_network):
def __init__(self, rng, batch_size, comp_precision, update_precision, initial_range, max_overflow, format):
deep_dropout_network.__init__(self, rng, batch_size, 3, comp_precision, update_precision,
initial_range, max_overflow, format)
print " Convolution layer 1:"
self.layer.append(Maxout_conv_layer(
rng,
image_shape=(batch_size, 1, 28, 28),
zero_pad = 0,
output_shape=(batch_size, 48, 10, 10),
filter_shape=(48, 1, 8, 8),
filter_stride = 1,
n_pieces = 2,
pool_shape=(4, 4),
pool_stride = 2,
p = 0.8,
scale = 1.,
max_col_norm = 0.9,
format = format,
comp_precision = comp_precision,
update_precision = update_precision,
initial_range = initial_range,
max_overflow = max_overflow
))
print " Convolution layer 2:"
self.layer.append(Maxout_conv_layer(
rng,
image_shape=(batch_size, 48, 10, 10),
zero_pad = 3, # add n zero on both side of the input
output_shape=(batch_size, 48, 4, 4),
filter_shape=(48, 48, 8, 8),
filter_stride = 1,
n_pieces = 2,
pool_shape=(4, 4),
pool_stride =2,
p = 0.5,
scale = 0.5,
max_col_norm = 1.9365,
format = format,
comp_precision = comp_precision,
update_precision = update_precision,
initial_range = initial_range,
max_overflow = max_overflow
))
print " Convolution layer 3:"
self.layer.append(Maxout_conv_layer(
rng,
image_shape=(batch_size, 48, 4, 4),
zero_pad = 3, # add n zero on both side of the input
output_shape=(batch_size, 24, 3, 3),
filter_shape=(24, 48, 5, 5),
filter_stride = 1,
n_pieces = 4,
pool_shape=(2, 2),
pool_stride =2,
p = 0.5,
scale = 0.5,
max_col_norm = 1.9365,
format = format,
comp_precision = comp_precision,
update_precision = update_precision,
initial_range = initial_range,
max_overflow = max_overflow
))
print " Softmax layer:"
self.layer.append(SoftmaxLayer(
rng = rng,
n_inputs= 24*3*3,
n_units = 10,
p = 0.5,
scale = 0.5,
max_col_norm =1.9365,
format = format,
comp_precision = comp_precision,
update_precision = update_precision,
initial_range = initial_range,
max_overflow = max_overflow
))
class CIFAR10_SVHN_model(deep_dropout_network):
def __init__(self, rng, batch_size, comp_precision, update_precision, initial_range, max_overflow, format):
deep_dropout_network.__init__(self, rng, batch_size, 4, comp_precision, update_precision,
initial_range, max_overflow, format)
print " Convolution layer 1:"
self.layer.append(Maxout_conv_layer(
rng,
image_shape=(batch_size, 3, 32, 32),
zero_pad = 2,
output_shape=(batch_size, 64, 16, 16), # 64 does fit in memory
filter_shape=(64, 3, 5, 5),
filter_stride = 1,
n_pieces = 2,
pool_shape=(3, 3),
pool_stride = 2,
p = 0.8,
scale = 1.,
max_col_norm = 0.9,
format = format,
comp_precision = comp_precision,
update_precision = update_precision,
initial_range = initial_range,
max_overflow = max_overflow,
w_LR_scale = 0.2,
b_LR_scale = 0.2,
# partial_sum = 32 # total number = 33*33
))
print " Convolution layer 2:"
self.layer.append(Maxout_conv_layer(
rng,
image_shape=(batch_size, 64, 16, 16),
zero_pad = 2, # add n zero on both side of the input
output_shape=(batch_size, 128, 8, 8),
filter_shape=(128, 64, 5, 5),
filter_stride = 1,
n_pieces = 2,
pool_shape=(3, 3),
pool_stride =2,
p = 0.5,
scale = 0.5,
max_col_norm = 1.9365,
format = format,
comp_precision = comp_precision,
update_precision = update_precision,
initial_range = initial_range,
max_overflow = max_overflow,
w_LR_scale = 0.2,
b_LR_scale = 0.2,
# partial_sum = 16 # total number = 15*15
))
print " Convolution layer 3:"
self.layer.append(Maxout_conv_layer(
rng,
image_shape=(batch_size, 128, 8, 8),
zero_pad = 2, # add n zero on both side of the input
output_shape=(batch_size, 128, 4, 4),
filter_shape=(128, 128, 5, 5),
filter_stride = 1,
n_pieces = 2,
pool_shape=(3, 3),
pool_stride =2,
p = 0.5,
scale = 0.5,
max_col_norm = 1.9365,
format = format,
comp_precision = comp_precision,
update_precision = update_precision,
initial_range = initial_range,
max_overflow = max_overflow,
w_LR_scale = 0.2,
b_LR_scale = 0.2,
# partial_sum = 8 # total number = 9*9
))
print " Maxout layer:"
self.layer.append(MaxoutLayer(
rng = rng,
n_inputs= 128*4*4,
n_units = 400,
n_pieces = 5,
p = 0.5,
scale = 0.5,
max_col_norm = 1.9365,
format = format,
comp_precision = comp_precision,
update_precision = update_precision,
initial_range = initial_range,
max_overflow = max_overflow
))
print " Softmax layer:"
self.layer.append(SoftmaxLayer(
rng = rng,
n_inputs= 400,
n_units = 10,
p = 0.5,
scale = 0.5,
max_col_norm = 1.9365,
format = format,
comp_precision = comp_precision,
update_precision = update_precision,
initial_range = initial_range,
max_overflow = max_overflow
))