-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathseq2seq_analyzer.py
263 lines (221 loc) · 9.58 KB
/
seq2seq_analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import copy
import logging
from collections import defaultdict, deque
from pathlib import Path
from typing import Dict, Deque
import jsonlines
import wandb
from nltk import edit_distance
from tqdm import tqdm
from analyzers import Analyzer
from common import ExperimentStage
from data import Seq2SeqDataLoaderFactory
logger = logging.getLogger("app")
@Analyzer.register("seq2seq")
class Seq2SeqAnalyzer(Analyzer):
dl_factory: Seq2SeqDataLoaderFactory
def __init__(self, **kwargs):
super().__init__(**kwargs)
assert isinstance(self.dl_factory, Seq2SeqDataLoaderFactory)
def analyze(self):
predictions_path = self.exp_root / f"pred_out_{self.split}.jsonl"
if predictions_path.exists():
(
evaluation_table,
accuracies,
distances,
scratchpad_metrics,
) = self._analyze_prediction(predictions_path)
self.logger.log({f"evaluated_acc/{self.split}/table": evaluation_table})
self.log_accuracies_and_distances(
copy.deepcopy(accuracies), copy.deepcopy(distances)
)
self.log_scratchpad_metrics(copy.deepcopy(scratchpad_metrics))
self.analyze_all_evaluation_steps()
def analyze_all_evaluation_steps(self):
predictions_dir = self.exp_root / f"eval_on_{self.split}_predictions"
if not predictions_dir.exists():
return
prediction_files = list(predictions_dir.glob("*.jsonl"))
if len(prediction_files) == 0:
return
prediction_files.sort(key=lambda x: int(x.stem.split("_")[0]))
aggregated_accuracies = dict()
for prediction_file in prediction_files:
step = int(prediction_file.stem.split("_")[-1].split("step-")[-1])
_, accuracies, _, scratchpad_metrics = self._analyze_prediction(
prediction_file
)
accuracies: Dict[str, Deque]
avg_accuracies = {
k: round(sum(v) / len(v), 4) for k, v in accuracies.items()
}
aggregated_accuracies[step] = avg_accuracies
steps = list(aggregated_accuracies.keys())
steps.sort()
# List average accuracies over sorted steps for each accuracy key
avg_accuracies = defaultdict(list)
for step in steps:
accuracies = aggregated_accuracies[step]
for k, v in accuracies.items():
avg_accuracies[k].append(v)
categories = list(avg_accuracies.keys())
categories.sort()
plot = wandb.plot.line_series(
steps,
[avg_accuracies[k] for k in categories],
keys=categories,
title="Average Accuracy over Evaluation Steps",
xname="Global Step",
)
self.logger.log({f"evaluated_acc/{self.split}/during_training": plot})
def _analyze_prediction(self, predictions_path: Path):
assert (
predictions_path.exists()
), f"Prediction file not found: {predictions_path}"
pred_objs = []
with jsonlines.open(str(predictions_path)) as reader:
for obj in reader:
pred_objs.append(obj)
ds_path = self.dl_factory.get_ds_file_path(
ExperimentStage.from_split(self.split)
)
logger.info(f"Evaluating against split: {self.split} at {ds_path}")
dataset_objs = self.dl_factory.get_dataset(
ExperimentStage.PREDICTION, path=ds_path
)
assert len(dataset_objs) == len(pred_objs)
accuracies: Dict[str, Deque] = defaultdict(deque)
distances: Dict[str, Deque] = defaultdict(deque)
scratchpad_metrics: Dict[str, Dict[str, Deque]] = defaultdict(
lambda: defaultdict(deque)
)
evaluation_table = wandb.Table(
columns=[
"idx",
"prediction",
"gold_answer",
"is_correct",
"edit_distance",
"parse_error",
]
)
for idx, (pred_obj, ds_obj) in tqdm(
enumerate(zip(pred_objs, dataset_objs)), total=len(pred_objs)
):
category = ds_obj["category"]
prediction = pred_obj["prediction"]
if hasattr(self.dl_factory.instance_processor, "_create_answer"):
gold_answer = self.dl_factory.instance_processor._create_answer(ds_obj)
else:
gold_answer = ds_obj["answer"]
try:
parsed_pred = (
self.dl_factory.instance_processor.extract_answer_from_prediction(
prediction
)
)
ed = 0
is_correct = self.dl_factory.instance_processor.is_prediction_correct(
prediction, ds_obj
)
if hasattr(self.dl_factory.instance_processor, "evaluate_scratchpad"):
eval_result = (
self.dl_factory.instance_processor.evaluate_scratchpad(
prediction, ds_obj
)
)
else:
eval_result = None
exp_str = ""
except Exception as exp:
logger.warning(f"Couldn't parse the model's prediction {exp}")
is_correct = False
exp_str = str(exp)
parsed_pred = prediction
ed = 100
eval_result = None
accuracies[category].append(is_correct)
distances[category].append(ed)
if eval_result is not None:
for k, v in eval_result.items():
scratchpad_metrics[k][category].append(v)
evaluation_table.add_data(
idx, str(parsed_pred), gold_answer, is_correct, ed, exp_str
)
return evaluation_table, accuracies, distances, scratchpad_metrics
def log_accuracies_and_distances(self, accuracies, distances, prefix: str = ""):
stats = []
for key, acc_lst in accuracies.items():
acc = sum(acc_lst) / len(acc_lst)
acc = round(acc, 4)
stats.append((f"{key}", acc))
self.logger.log({f"pred/{self.split}_{prefix}acc_{key}": acc})
self.log({f"pred/{self.split}_{prefix}acc_{key}": acc})
all_predictions = [
is_correct for acc_lst in accuracies.values() for is_correct in acc_lst
]
overall_acc = sum(all_predictions) / len(all_predictions)
overall_acc = round(overall_acc, 4)
stats.append(("overall", overall_acc))
self.logger.log({f"pred/{self.split}_{prefix}acc_overall": overall_acc})
self.log({f"pred/{self.split}_{prefix}acc_overall": overall_acc})
plot = wandb.plot.bar(
wandb.Table(data=stats, columns=["split", "eAcc"]),
label="split",
value="eAcc",
title=f"Evaluated {prefix} accuracy in split: {self.split}",
)
self.logger.log({f"evaluated_acc/{self.split}/{prefix}plot": plot})
stats = []
for key, dist_lst in distances.items():
dist = sum(dist_lst) / len(dist_lst)
dist = round(dist, 4)
stats.append((f"{key}", dist))
self.logger.log({f"pred/{self.split}_{prefix}editDistance_{key}": dist})
self.log({f"pred/{self.split}_{prefix}editDistance_{key}": dist})
distances = [dist for dist_lst in distances.values() for dist in dist_lst]
overall_dist = sum(distances) / len(distances)
overall_dist = round(overall_dist, 4)
stats.append(("overall", overall_dist))
self.logger.log(
{f"pred/{self.split}_{prefix}editDistance_overall": overall_dist}
)
self.log({f"pred/{self.split}_{prefix}editDistance_overall": overall_dist})
plot = wandb.plot.bar(
wandb.Table(data=stats, columns=["split", "edist"]),
label="split",
value="edist",
title=f"Evaluated {prefix} Edit Distance (editDistance) in split: {self.split}",
)
self.logger.log({f"evaluated_acc/{self.split}/{prefix}editDistance_plot": plot})
def log_scratchpad_metrics(
self, scratchpad_metrics: Dict[str, Dict[str, Deque[float]]], prefix: str = ""
):
for metric, accuracies in scratchpad_metrics.items():
stats = []
for key, acc_lst in accuracies.items():
acc = sum(acc_lst) / len(acc_lst)
acc = round(acc, 4)
stats.append((f"{key}", acc))
self.logger.log({f"pred/{self.split}_{prefix}_{metric}_{key}": acc})
self.log({f"pred/{self.split}_{prefix}_{metric}_{key}": acc})
all_predictions = [
is_correct for acc_lst in accuracies.values() for is_correct in acc_lst
]
overall_acc = sum(all_predictions) / len(all_predictions)
overall_acc = round(overall_acc, 4)
stats.append(("overall", overall_acc))
self.logger.log(
{f"pred/{self.split}_{prefix}_{metric}__overall": overall_acc}
)
self.log({f"pred/{self.split}_{prefix}_{metric}__overall": overall_acc})
plot = wandb.plot.bar(
wandb.Table(data=stats, columns=["split", "eAcc"]),
label="split",
value="eAcc",
title=f"Evaluated {prefix} {metric} (scratchpad) in split: {self.split}",
)
self.logger.log(
{f"evaluated_acc/{self.split}/{prefix}_{metric}_plot": plot}
)