forked from IMTtugraz/PyQMRI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsoft_sense_test.py
205 lines (174 loc) · 4.61 KB
/
soft_sense_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# import matplotlib.pyplot as plt
# import numpy as np
import os
# from skimage.metrics import structural_similarity as calc_ssim
import pyqmri.softsense as softsense
from pyqmri._helper_fun._utils import gen_soft_sense_default_config
data_file_name = ''
cmaps_file_name = ''
# def img_montage(imgs, minval=None, maxval=None, title=''):
# if np.ndim(imgs) <= 3:
# imgs = np.expand_dims(imgs, axis=0)
#
# u = 1
# if np.ndim(imgs) == 4:
# u = np.shape(imgs)[0]
#
# for i in range(u):
# z, y, x = np.shape(imgs[i])
#
# xx = int(np.ceil(np.sqrt(z)))
# yy = xx
# montage = np.zeros((yy * y, xx * x))
#
# img_id = 0
# for m in range(xx):
# for n in range(yy):
# if img_id >= z:
# break
# slice_n, slice_m = n * y, m * x
# montage[slice_n:slice_n + y, slice_m:slice_m + x] \
# = np.flipud(imgs[i, img_id, :, :])
# img_id += 1
#
# vmin, vmax = 0, 1
# if minval:
# vmin = minval
# if maxval:
# vmax = maxval
#
# plt.figure()
# plt.imshow(montage, vmin=vmin, vmax=vmax, cmap='gray')
# plt.title(title)
# plt.show()
#
#
# def normalize_imgs(x):
# if x.ndim == 2:
# x = np.expand_dims(x, 0)
# for i in range(x.shape[-3]):
# img = x[i]
# i_min = np.min(img)
# i_max = np.max(img)
# x[i] = (img - i_min) / (i_max - i_min) if np.abs(i_max - i_min) > 0 else 0
# return np.squeeze(x)
#
#
# def calc_psnr(img, orig_img):
# rmse = calc_rmse(img, orig_img)
# psnr = 100
# if rmse != 0:
# psnr = 20 * np.log10(1. / rmse)
# return psnr
#
#
# def calc_rmse(img, orig_img):
# return np.sqrt(calc_mse(img, orig_img))
#
#
# def calc_mse(img, orig_img):
# return np.mean((img - orig_img)**2)
#
#
# def calc_image_metrics(imgs, orig_imgs):
# mse = []
# psnr = []
# ssim = []
#
# for img, orig_img in zip(imgs, orig_imgs):
# mse.append(calc_mse(img, orig_img))
# psnr.append(calc_psnr(img, orig_img))
# ssim.append(calc_ssim(img, orig_img))
#
# print('-'*75)
# print('MSE min: ' + str(np.min(mse)))
# print('PSNR max: ' + str(np.max(psnr)))
# print('SSIM max: ' + str(np.max(ssim)))
# print('-' * 75)
# return mse, psnr, ssim
def tv_entire_ds_test():
_ = softsense.run(
data=data_file_name,
cmaps=cmaps_file_name,
streamed=False,
reg_type='TV',
config='default_soft_sense.ini'
)
def tgv_entire_ds_test():
_ = softsense.run(
data=data_file_name,
cmaps=cmaps_file_name,
streamed=False,
reg_type='TGV',
config='default_soft_sense.ini'
)
def tv_entire_ds_test_streamed():
_ = softsense.run(
data=data_file_name,
cmaps=cmaps_file_name,
streamed=True,
reg_type='TV',
config='default_soft_sense.ini',
par_slices=32
)
def tgv_entire_ds_test_streamed():
_ = softsense.run(
data=data_file_name,
cmaps=cmaps_file_name,
streamed=True,
reg_type='TGV',
config='default_soft_sense.ini',
par_slices=16
)
def tv_chunk_ds_test():
_ = softsense.run(
data=data_file_name,
cmaps=cmaps_file_name,
streamed=False,
reg_type='TV',
config='default_soft_sense.ini',
reco_slices=32,
double_precision=False
)
def tgv_chunk_ds_test():
_ = softsense.run(
data=data_file_name,
cmaps=cmaps_file_name,
streamed=False,
reg_type='TGV',
config='default_soft_sense.ini',
reco_slices=32
)
def tv_chunk_ds_test_streamed():
_ = softsense.run(
data=data_file_name,
cmaps=cmaps_file_name,
streamed=False,
reg_type='TV',
config='default_soft_sense.ini',
reco_slices=64,
par_slices=8
)
def tgv_chunk_ds_test_streamed():
_ = softsense.run(
data=data_file_name,
cmaps=cmaps_file_name,
streamed=False,
reg_type='TGV',
config='default_soft_sense.ini',
reco_slices=64,
par_slices=8
)
def main():
if not os.path.exists(os.getcwd() + os.sep + 'default_soft_sense.ini'):
gen_soft_sense_default_config()
tv_chunk_ds_test()
# tv_entire_ds_test()
tgv_chunk_ds_test()
# tgv_entire_ds_test()
# tv_entire_ds_test_streamed()
# tgv_entire_ds_test_streamed()
# tv_chunk_ds_test_streamed()
# tgv_chunk_ds_test_streamed()
if __name__ == '__main__':
main()