Skip to content

Latest commit

 

History

History
141 lines (99 loc) · 3.17 KB

README.md

File metadata and controls

141 lines (99 loc) · 3.17 KB

Introduction

vedacls is an open source classification toolbox based on PyTorch.

License

This project is released under the Apache 2.0 license.

Installation

Requirements

  • Linux
  • Python 3.6+
  • PyTorch 1.4.0 or higher
  • CUDA 9.0 or higher

We have tested the following versions of OS and softwares:

  • OS: Ubuntu 16.04.6 LTS
  • CUDA: 10.2
  • PyTorch 1.4.0
  • Python 3.6.9

Install vedacls

  1. Create a conda virtual environment and activate it.
conda create -n vedacls python=3.6.9 -y
conda activate vedacls
  1. Install PyTorch and torchvision following the official instructions, e.g.,
conda install pytorch torchvision -c pytorch
  1. Clone the vedacls repository.
git clone https://github.com/Media-Smart/vedacls.git
cd vedacls
vedacls_root=${PWD}
  1. Install dependencies.
pip install -r requirements.txt

Prepare data

The catalogue structure of dataset supported by vedacls toolbox is as follows:

data/
├── train
│   ├── 0
│   │   ├── XXX.jpg
│   │     
│   ├── 1
│   ├── 2
│   ├── ...
│
├── val
│   ├── 0
│   ├── 1
│   ├── 2
│   ├── ...
│ 
├── test
    ├── 0
    ├── 1
    ├── 2
    ├── ...

Train

  1. Config

Modify some configuration accordingly in the config file like configs/resnet18.py

  1. Run
python tools/train.py configs/resnet18.py

Snapshots and logs will be generated at ${vedacls_root}/workdir/resnet18

Test

  1. Config

Modify some configuration accordingly in the config file like configs/resnet18.py

  1. Run
python tools/test.py configs/resnet18.py checkpoint_path

Inference

  1. Config

Modify some configuration accordingly in the config file like configs/resnet18.py

  1. Run
python tools/inference.py configs/resnet18.py checkpoint_path image_path

Deploy

  1. Install volksdep following the official instructions

  2. Benchmark(optional)

python tools/deploy/benchmark.py configs/resnet18.py checkpoint_path image_path

More available arguments are detailed in tools/deploy/benchmark.py

  1. Export model as ONNX or TensorRT engine format
python tools/deploy/export.py configs/resnet18.py checkpoint_path image_path out_model_path

More available arguments are detailed in tools/deploy/export.py

  1. Inference SDK

You can refer to FlexInfer for details.

Contact

This repository is currently maintained by Chenhao Wang (@C-H-Wong), Hongxiang Cai (@hxcai), Yichao Xiong (@mileistone).

Credits

We got a lot of code from mmcv and mmdetection, thanks to open-mmlab.