-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_lora_shufflenet_radimagenet.py
235 lines (181 loc) · 8.25 KB
/
train_lora_shufflenet_radimagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from tqdm import tqdm
import torch.nn.functional as F
import copy
import threading
import random
import multiprocessing
from torch.utils.data import Dataset, DataLoader, Sampler
from losses import SoftTarget
from data.radimagenet import RadData
from network.shuffle_adapter import AdapterWrapperShuffleNet
from peft.lora_fast_shufflenet import LoraConv2d, MultiLoraConv2d
import time
from network.shufflenet_v2_lora import shufflenet
from collections import OrderedDict
def main():
num_task = 11
num_classes = [6,28,2,13,18,14,9,25,26,10,14]
total_num_classes = 165
max_epochs = 100
batch_size = 1024
test_batch_size = 512
multi_gpu = True
# model
adapter_class = MultiLoraConv2d
resnet = shufflenet(pretrained=False)
student_model = nn.ModuleDict(
{
'CKN': AdapterWrapperShuffleNet(resnet, adapter_class, num_task=num_task, gamma=4, lora_alpha=16), # gamma=8, lora_alpha=16
'neck': nn.AdaptiveAvgPool2d((1, 1)),
'head_task': nn.ModuleList([nn.Linear(1024, num_classes[i]) for i in range(num_task)]),
'head': nn.Linear(1024, total_num_classes),
}
)
if multi_gpu:
for each_key in student_model.keys():
if isinstance(student_model[each_key], nn.ModuleList):
student_model[each_key] = nn.ModuleList([nn.DataParallel(each_module) for each_module in student_model[each_key]])
else:
student_model[each_key] = nn.DataParallel(student_model[each_key])
student_model = student_model.cuda()
teacher_model = nn.ModuleDict(
{
'backbone': radresnet50(model_path='RadImageNet-ResNet50_notop.pth'),
'neck': nn.AdaptiveAvgPool2d((1, 1)),
}
)
if multi_gpu:
for each_key in teacher_model.keys():
teacher_model[each_key] = nn.DataParallel(teacher_model[each_key])
feat_channels_student = [1024]
feat_channels_teacher = [2048]
feat_fcs = []
for i in range(len(feat_channels_student)):
feat_fcs.append(nn.Sequential(
nn.Linear(
feat_channels_teacher[i], feat_channels_student[i]),
)
)
feat_fcs = nn.ModuleList(feat_fcs).cuda()
teacher_model = teacher_model.cuda()
teacher_model.eval()
teacher_model['backbone'].eval()
if 'head' in teacher_model.keys():
teacher_model['head'].eval()
# loss function
criterionCls = F.cross_entropy
criterionKD = SoftTarget(10.0)
# optimizer
trainable_list = nn.ModuleList([])
trainable_list.append(student_model)
if feat_fcs is not None:
trainable_list.append(feat_fcs)
optimizer = torch.optim.SGD(
trainable_list.parameters(),
lr=0.05,
momentum=0.9,
weight_decay=0.0001,
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=max_epochs)
print('build optimizer finish!')
# data
train_dataset = RadData(split="train")
test_dateset = RadData(split="test")
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
test_dataloader = DataLoader(test_dateset, batch_size=test_batch_size, shuffle=False, num_workers=4)
# train
tensor_num_classes = torch.tensor(num_classes)
tensor_num_classes_cumsum = tensor_num_classes.cumsum(dim=0)
print('start train...')
for epoch in range(max_epochs):
start_time = time.time()
for idx, batch_data in enumerate(tqdm(train_dataloader, desc=f"Training Epoch {epoch}")):
optimizer.zero_grad()
img, gt_label, task_label = batch_data
real_bs, real_c = img.shape[0], img.shape[1]
if img.shape[0] < batch_size:
continue
img, gt_label, task_label = img.cuda(), gt_label.cuda(), task_label.cuda()
with torch.no_grad():
teacher_feature_before_pool = teacher_model['backbone'](img[:real_bs,:])
teacher_feature = teacher_model['neck'](teacher_feature_before_pool)
teacher_feature = teacher_feature.view(teacher_feature.size(0), -1)
if 'head' in teacher_model.keys():
teacher_logit = teacher_model['head'](teacher_feature)
if 'head' not in teacher_model.keys():
teacher_feature = feat_fcs[0](teacher_feature)
multi_student_feature_before_pool = student_model['CKN'](img, task_label)
multi_student_feature = student_model['neck'](multi_student_feature_before_pool).view(multi_student_feature_before_pool.size(0), -1)
result = dict(feats=[], mu_vars=[])
# get logit
student_logits = student_model['head'](multi_student_feature)
# ========= loss ========== #
loss_task = 0.0
count = 0
total_num_count = 0
batch_size = img.shape[0]
for i in range(num_task):
task_label_not_one_hot = torch.argmax(task_label, dim=1)
task_select_mask = task_label_not_one_hot == i
if torch.sum(task_select_mask) == 0:
continue
logit = student_model['head_task'][i](multi_student_feature[task_select_mask])
if i>0:
label_offset = tensor_num_classes_cumsum[i-1]
else:
label_offset = 0
count = count + 1
total_num_count = total_num_count + len(multi_student_feature[task_select_mask])
loss_task = loss_task + len(multi_student_feature[task_select_mask])*(criterionCls(logit, gt_label.view(-1)[task_select_mask]-label_offset) + 0*criterionKD(multi_student_feature[task_select_mask], teacher_feature.detach()[task_select_mask]))
loss_task = loss_task/batch_size
if 'head' in teacher_model.keys():
loss_kd = criterionKD(student_logits, teacher_logit.detach())
else:
loss_kd = criterionKD(multi_student_feature, teacher_feature.detach())
# Cls loss and infor loss
loss_cls = criterionCls(student_logits, gt_label.view(-1))
total_loss = 0.*(loss_kd + loss_cls) + loss_task
total_loss.backward()
optimizer.step()
scheduler.step()
# test
print('start test...')
student_model.eval()
correct, total = 0, 0
correct_list, total_list = torch.tensor([0]*num_task), torch.tensor([0]*num_task)
for idx, batch_data in enumerate(tqdm(test_dataloader, desc=f"Test")):
img, gt_label, task_label = batch_data
if img.shape[0] < test_batch_size:
continue
real_bs = img.shape[0]
img, gt_label, task_label = img.cuda(), gt_label.cuda(), task_label.cuda()
gt_label = gt_label.view(-1)
multi_student_feature_before_pool = student_model['CKN'](img, task_label)
multi_student_feature = student_model['neck'](multi_student_feature_before_pool).view(multi_student_feature_before_pool.size(0), -1)
result = dict(feats=[])
# get logit
student_logits = student_model['head'](multi_student_feature)
for i in range(num_task):
task_label_not_one_hot = torch.argmax(task_label, dim=1)
task_select_mask = task_label_not_one_hot == i
if torch.sum(task_select_mask) == 0:
continue
logit = student_model['head_task'][i](multi_student_feature[task_select_mask])
if i>0:
label_offset = tensor_num_classes_cumsum[i-1]
else:
label_offset = 0
pred = torch.argmax(logit, dim=1)
correct_list[i] = correct_list[i] + torch.sum(pred == (gt_label[task_select_mask]-label_offset)).item()
total_list[i] = total_list[i] + len(logit)
pred = torch.argmax(student_logits, dim=1)
correct += torch.sum(pred == gt_label).item()
total += len(gt_label)
print(f"Indomain Evaluating Accuracy: {correct/total: .4f}")
print(f"Indomain Evaluating each task Accuracy: {correct_list/total_list}")
torch.save(student_model.state_dict(), 'lora_radimagenet_shufflenet.pth')
if __name__ == "__main__":
main()