-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
210 lines (176 loc) · 9.02 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import cv2
import math
import time
import megengine.distributed as dist
from megengine.data import DataLoader, RandomSampler
import numpy as np
import random
import argparse
from skimage.color import rgb2yuv, yuv2rgb
from util import compute_SSIM
import mge_lpips
import megengine as mge
import logging
import importlib
from tensorboardX import SummaryWriter
from yuv_frame_io import YUV_Read,YUV_Write
from model import Model
from dataset import *
from util import *
def base_build_dataset(name):
return getattr(importlib.import_module('dataset', package=None), name)()
def get_learning_rate(step):
if step < 2000:
mul = step / 2000.
else:
mul = np.cos((step - 2000) / (args.epoch * args.step_per_epoch - 2000.) * math.pi) * 0.5 + 0.5
return (1e-4 - 1e-5) * mul + 1e-5
def train(model, args):
step = 0
nr_eval = args.resume_epoch
dataset = base_build_dataset(args.train_dataset)
sampler = RandomSampler(dataset, batch_size=args.batch_size)
train_data = DataLoader(dataset, sampler=sampler)
args.step_per_epoch = train_data.__len__()
step = 0 + args.step_per_epoch * args.resume_epoch
if dist.get_rank() == 0:
print('training...')
time_stamp = time.time()
for epoch in range(args.resume_epoch, args.epoch):
# sampler.set_epoch(epoch)
for i, data in enumerate(train_data):
data_time_interval = time.time() - time_stamp
time_stamp = time.time()
data_gpu = data
data_gpu = mge.tensor(data_gpu) / 255. #B,3,C,H,W
learning_rate = get_learning_rate(step)
loss_avg = model.train(data_gpu, learning_rate)
train_time_interval = time.time() - time_stamp
time_stamp = time.time()
if step % 200 == 1 and dist.get_rank() == 0:
writer.add_scalar('learning_rate', learning_rate, step)
writer.add_scalar('loss/loss_l1', loss_avg.numpy(), step)
writer.flush()
if dist.get_rank() == 0:
logger.info('epoch:{} {}/{} time:{:.2f}+{:.2f} loss_avg:{:.4e}'.format( \
epoch, i, args.step_per_epoch, data_time_interval, train_time_interval, loss_avg.numpy()))
step += 1
nr_eval += 1
# if nr_eval % 1 == 0:
# for dataset_name in args.val_datasets:
# val_dataset = base_build_dataset(dataset_name)
# val_sampler = RandomSampler(val_dataset, batch_size=1, world_size=1, rank=0)
# val_data = DataLoader(val_dataset, sampler=val_sampler)
# evaluate(model, val_data, dataset_name, nr_eval, step)
if dist.get_rank() <= 0:
model.save_model(save_model_path, epoch, dist.get_rank())
def evaluate(model, val_data, name, nr_eval, step):
if name == "CityValDataset" or name == "KittiValDataset" or name == "DavisValDataset":
lpips_score_mine, psnr_score_mine, ssim_score_mine = np.zeros(5), np.zeros(5), np.zeros(5)
time_stamp = time.time()
num = val_data.__len__()
for i, data in enumerate(val_data):
data_gpu, _ = data
data_gpu = mge.tensor(data_gpu) / 255.
preds = model.eval(data_gpu, name)
b,n,c,h,w = preds.shape
assert b==1 and n==5
gt, pred = data_gpu[0], preds[0]
for j in range(5):
psnr = -10 * math.log10(F.mean((gt[j+4] - pred[j]) * (gt[j+4] - pred[j])).detach().numpy())
ssim_val = compute_SSIM( gt[j+4:j+5], pred[j:j+1]) #(N,)
x, y = ((gt[j+4:j+5]-0.5)*2.0), ((pred[j:j+1]-0.5)*2.0)
lpips_val = loss_fn_alex(x, y)
lpips_score_mine[j] += lpips_val.numpy()
ssim_score_mine[j] += ssim_val.numpy()
psnr_score_mine[j] += psnr
gt_1 = (np.transpose(gt[j+4:j+5].detach().numpy(), (0, 2, 3, 1)) * 255).astype('uint8')
pred_1 = (np.transpose(pred[j:j+1].detach().numpy(), (0, 2, 3, 1)) * 255).astype('uint8')
if i == 50 and dist.get_rank() == 0:
imgs = np.concatenate((gt_1[0], pred_1[0]), 1)[:, :, ::-1]
writer_val.add_image(name+str(j) + '/img', imgs.copy(), step, dataformats='HWC')
eval_time_interval = time.time() - time_stamp
if dist.get_rank() != 0:
return
psnr_score_mine, ssim_score_mine, lpips_score_mine = psnr_score_mine/num, ssim_score_mine/num, lpips_score_mine/num
for i in range(5):
logger.info('%d '%(nr_eval)+name+' psnr_%d '%(i)+'%.4f'%(sum(psnr_score_mine[:(i+1)])/(i+1))+' ssim_%d '%(i)+
'%.4f'%(sum(ssim_score_mine[:(i+1)])/(i+1))+' lpips_%d '%(i)+'%.4f'%(sum(lpips_score_mine[:(i+1)])/(i+1)))
writer_val.add_scalar(name+' psnr_%d'%(i), psnr_score_mine[i], step)
writer_val.add_scalar(name+' ssim_%d'%(i), ssim_score_mine[i], step)
writer_val.add_scalar(name+' lpips_%d'%(i), lpips_score_mine[i], step)
elif name=="VimeoValDataset":
lpips_score_mine, ssim_score_mine, psnr_score_mine = np.zeros(1), np.zeros(1), np.zeros(1)
time_stamp = time.time()
num = val_data.__len__()
for i, data in enumerate(val_data):
data_gpu, _ = data
data_gpu = mge.tensor(data_gpu) / 255.
preds = model.eval(data_gpu, name)
b,n,c,h,w = preds.shape
assert b==1 and n==1
gt, pred = data_gpu[0], preds[0]
psnr = -10 * math.log10(F.mean((gt[2] - pred[0]) * (gt[2] - pred[0])).detach().numpy())
ssim_val = compute_SSIM( gt[2:3], pred[0:1] ) #(N,)
x, y = ((gt[2:3]-0.5)*2.0), ((pred[0:1]-0.5)*2.0)
lpips_val = loss_fn_alex(x, y)
lpips_score_mine[0] += lpips_val.numpy()
ssim_score_mine[0] += ssim_val.numpy()
psnr_score_mine[0] += psnr
gt_1 = (np.transpose(gt[2:3].detach().numpy(), (0, 2, 3, 1)) * 255).astype('uint8')
pred_1 = (np.transpose(pred[0:1].detach().numpy(), (0, 2, 3, 1)) * 255).astype('uint8')
if i == 50 and dist.get_rank() == 0:
imgs = np.concatenate((gt_1[0], pred_1[0]), 1)[:, :, ::-1]
writer_val.add_image(name+str(0) + '/img', imgs.copy(), step, dataformats='HWC')
eval_time_interval = time.time() - time_stamp
if dist.get_rank() != 0:
return
psnr_score_mine, ssim_score_mine, lpips_score_mine = psnr_score_mine/num, ssim_score_mine/num, lpips_score_mine/num
for i in range(1):
logger.info('%d '%(nr_eval)+name+' psnr_%d '%(i)+'%.4f'%(sum(psnr_score_mine[:(i+1)])/(i+1))+' ssim_%d '%(i)+
'%.4f'%(sum(ssim_score_mine[:(i+1)])/(i+1))+' lpips_%d '%(i)+'%.4f'%(sum(lpips_score_mine[:(i+1)])/(i+1)))
writer_val.add_scalar(name+' psnr_%d'%(i), psnr_score_mine[i], step)
writer_val.add_scalar(name+' ssim_%d'%(i), ssim_score_mine[i], step)
writer_val.add_scalar(name+' lpips_%d'%(i), lpips_score_mine[i], step)
@dist.launcher(world_size=8)
def main():
rank = dist.get_rank()
seed = 1234
random.seed(seed)
np.random.seed(seed)
mge.random.seed(seed)
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', default=300, type=int)
parser.add_argument('--num_gpu', default=4, type=int) # or 8
parser.add_argument('--batch_size', default=8, type=int, help='minibatch size')
parser.add_argument('--train_dataset', required=True, type=str, help='CityTrainDataset, KittiTrainDataset, VimeoTrainDataset')
parser.add_argument('--val_datasets', type=str, nargs='+', default=['CityValDataset'], help='[CityValDataset,KittiValDataset,VimeoValDataset,DavisValDataset]')
parser.add_argument('--resume_path', default=None, type=str, help='continue to train, model path')
parser.add_argument('--resume_epoch', default=0, type=int, help='continue to train, epoch')
global args
args = parser.parse_args()
global exp
exp = os.path.abspath('.').split('/')[-1]
global loss_fn_alex
loss_fn_alex = mge_lpips.LPIPS(net='alex')
global log_path
log_path = './logs/train_log_{}/{}'.format(args.train_dataset, exp)
global save_model_path
save_model_path = './models/train_log_{}/{}'.format(args.train_dataset, exp)
if dist.get_rank() == 0:
if not os.path.exists(save_model_path):
os.makedirs(save_model_path)
if not os.path.exists(log_path):
os.makedirs(log_path)
setup_logger('base', log_path, 'train', level=logging.INFO, screen=True, to_file=True)
global writer
writer = SummaryWriter(log_path + '/train')
global writer_val
writer_val = SummaryWriter(log_path + '/validate')
global logger
logger = logging.getLogger('base')
model = Model(local_rank=rank, resume_path=args.resume_path, resume_epoch=args.resume_epoch)
train(model, args)
if __name__ == "__main__":
main()