-
Notifications
You must be signed in to change notification settings - Fork 4
/
evaluate.py
executable file
·199 lines (168 loc) · 7.91 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import argparse
import logging
import os
import dataset.data_loader as data_loader
import model.net as net
from common import utils
from loss.losses import compute_losses, compute_metrics
from common.manager import Manager
import megengine.distributed as dist
import megengine.functional as F
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir", default="experiments/base_model", help="Directory containing params.json")
parser.add_argument("--restore_file", default="best", help="name of the file in --model_dir containing weights to load")
def evaluate(model, manager):
rank = dist.get_rank()
world_size = dist.get_world_size()
"""Evaluate the model on `num_steps` batches.
Args:
model: (torch.nn.Module) the neural network
manager: a class instance that contains objects related to train and evaluate.
"""
# set model to evaluation mode
model.eval()
# compute metrics over the dataset
if manager.dataloaders["val"] is not None:
# loss status and val status initial
manager.reset_loss_status()
manager.reset_metric_status("val")
for data_batch in manager.dataloaders["val"]:
# compute the real batch size
bs = data_batch["points_src"].shape[0]
# move to GPU if available
data_batch = utils.tensor_mge(data_batch)
# compute model output
output_batch = model(data_batch)
# compute all loss on this batch
loss = compute_losses(data_batch, output_batch, manager.params)
metrics = compute_metrics(data_batch, output_batch, manager.params)
if world_size > 1:
for k, v in loss.items():
loss[k] = F.distributed.all_reduce_sum(v) / world_size
for k, v in metrics.items():
metrics[k] = F.distributed.all_reduce_sum(v) / world_size
manager.update_loss_status(loss, "val", bs)
# compute all metrics on this batch
manager.update_metric_status(metrics, "val", bs)
# update val data to tensorboard
if rank == 0:
# compute RMSE metrics
manager.summarize_metric_status(metrics, "val")
manager.writer.add_scalar("Loss/val", manager.loss_status["total"].avg, manager.epoch)
# manager.logger.info("Loss/valid epoch {}: {:.4f}".format(manager.epoch, manager.loss_status["total"].avg))
for k, v in manager.val_status.items():
manager.writer.add_scalar("Metric/val/{}".format(k), v.avg, manager.epoch)
# For each epoch, print the metric
manager.print_metrics("val", title="Val", color="green")
if manager.dataloaders["test"] is not None:
# loss status and val status initial
manager.reset_loss_status()
manager.reset_metric_status("test")
for data_batch in manager.dataloaders["test"]:
# compute the real batch size
bs = data_batch["points_src"].shape[0]
# move to GPU if available
data_batch = utils.tensor_mge(data_batch)
# compute model output
output_batch = model(data_batch)
# compute all loss on this batch
loss = compute_losses(data_batch, output_batch, manager.params)
metrics = compute_metrics(data_batch, output_batch, manager.params)
if world_size > 1:
for k, v in loss.items():
loss[k] = F.distributed.all_reduce_sum(v) / world_size
for k, v in metrics.items():
metrics[k] = F.distributed.all_reduce_sum(v) / world_size
manager.update_loss_status(loss, "test", bs)
# compute all metrics on this batch
manager.update_metric_status(metrics, "test", bs)
# update test data to tensorboard
if rank == 0:
# compute RMSE metrics
manager.summarize_metric_status(metrics, "test")
manager.writer.add_scalar("Loss/test", manager.loss_status["total"].avg, manager.epoch)
# manager.logger.info("Loss/test epoch {}: {:.4f}".format(manager.epoch, manager.loss_status["total"].avg))
for k, v in manager.val_status.items():
manager.writer.add_scalar("Metric/test/{}".format(k), v.avg, manager.epoch)
# For each epoch, print the metric
manager.print_metrics("test", title="Test", color="red")
def test(model, manager):
"""Test the model with loading checkpoints.
Args:
model: (torch.nn.Module) the neural network
manager: a class instance that contains objects related to train and evaluate.
"""
# set model to evaluation mode
model.eval()
# compute metrics over the dataset
if manager.dataloaders["val"] is not None:
# loss status and val status initial
manager.reset_loss_status()
manager.reset_metric_status("val")
for data_batch in manager.dataloaders["val"]:
# compute the real batch size
bs = data_batch["points_src"].shape[0]
# move to GPU if available
data_batch = utils.tensor_mge(data_batch)
# compute model output
output_batch = model(data_batch)
# compute all loss on this batch
loss = compute_losses(data_batch, output_batch, manager.params)
manager.update_loss_status(loss, "val", bs)
# compute all metrics on this batch
metrics = compute_metrics(data_batch, output_batch, manager.params)
manager.update_metric_status(metrics, "val", bs)
# compute RMSE metrics
manager.summarize_metric_status(metrics, "val")
# For each epoch, update and print the metric
manager.print_metrics("val", title="Val", color="green")
if manager.dataloaders["test"] is not None:
# loss status and test status initial
manager.reset_loss_status()
manager.reset_metric_status("test")
for data_batch in manager.dataloaders["test"]:
# compute the real batch size
bs = data_batch["points_src"].shape[0]
# move to GPU if available
data_batch = utils.tensor_mge(data_batch)
# compute model output
output_batch = model(data_batch)
# compute all loss on this batch
loss = compute_losses(data_batch, output_batch, manager.params)
manager.update_loss_status(loss, "test", bs)
# compute all metrics on this batch
metrics = compute_metrics(data_batch, output_batch, manager.params)
manager.update_metric_status(metrics, "test", bs)
# compute RMSE metrics
manager.summarize_metric_status(metrics, "test")
# For each epoch, print the metric
manager.print_metrics("test", title="Test", color="red")
if __name__ == "__main__":
"""
Evaluate the model on the test set.
"""
# Load the parameters
args = parser.parse_args()
json_path = os.path.join(args.model_dir, "params.json")
assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path)
params = utils.Params(json_path)
# Only load model weights
params.only_weights = True
# Update args into params
params.update(vars(args))
# Get the logger
logger = utils.set_logger(os.path.join(args.model_dir, "evaluate.log"))
# Create the input data pipeline
logging.info("Creating the dataset...")
# Fetch dataloaders
dataloaders = data_loader.fetch_dataloader(params)
# Define the model and optimizer
model = net.fetch_net(params)
# Initial status for checkpoint manager
manager = Manager(model=model, optimizer=None, scheduler=None, params=params, dataloaders=dataloaders, writer=None, logger=logger)
# Reload weights from the saved file
manager.load_checkpoints()
# Test the model
logger.info("Starting test")
# Evaluate
test(model, manager)