Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
40 commits
Select commit Hold shift + click to select a range
774c4c1
Add XTTS FT demo data processing pipeline
Edresson Nov 22, 2023
cc4f37e
Add training and inference columns
Edresson Nov 23, 2023
7cc348e
Uses tabs instead of columns
Edresson Nov 23, 2023
626d9e1
Fix demo freezing issue
Edresson Nov 24, 2023
fa9bb26
Update demo
Edresson Nov 24, 2023
3fc2880
Convert stereo to mono
Edresson Nov 24, 2023
af74cd4
Bug fix on XTTS inference
Edresson Nov 24, 2023
8967fc7
Update gradio demo
Edresson Nov 24, 2023
c76fb85
Update gradio demo
Edresson Nov 24, 2023
70f2cb9
Update gradio demo
Edresson Nov 24, 2023
335b8c3
Update gradio demo
Edresson Nov 24, 2023
eaa5355
Add parameters to be able to set then on colab demo
Edresson Nov 27, 2023
c5cb7eb
Add erros messages
Edresson Nov 27, 2023
e6c51e3
Add intuitive error messages
Edresson Nov 27, 2023
ceb8b05
Update
Edresson Nov 27, 2023
1a60767
Add max_audio_length parameter
Edresson Nov 27, 2023
68964fc
Add XTTS fine-tuner docs
Edresson Dec 1, 2023
5dd217a
Update XTTS finetuner docs
Edresson Dec 1, 2023
eb18b27
Delete trainer to freeze memory
Edresson Dec 1, 2023
490af29
Delete unused variables
Edresson Dec 1, 2023
e9a2c06
Add gc.collect()
Edresson Dec 1, 2023
1936330
Update xtts.md
erogol Dec 1, 2023
03464e5
Update requirements.txt
suminhthanh May 15, 2024
1a8cd16
Update requirements.txt
suminhthanh May 15, 2024
d97033e
Update requirements.txt faster_whisper==1.0.2
suminhthanh May 15, 2024
8197815
Update requirements.txt 1.26.2
suminhthanh May 15, 2024
27c1f85
Update requirements.txt gradio==4.29.0
suminhthanh May 15, 2024
888296b
Update xtts_demo.py add vi
suminhthanh May 15, 2024
8a94ab2
Update requirements.txt
suminhthanh May 15, 2024
de356fe
Update xtts_config.py
suminhthanh May 15, 2024
72634fd
Update tokenizer.py
suminhthanh May 15, 2024
d676cbc
Update tokenizer.py
suminhthanh May 15, 2024
15a2a1b
Update tokenizer.py
suminhthanh May 15, 2024
7997017
Update tokenizer.py
suminhthanh May 15, 2024
f4663e5
Update formatter.py
suminhthanh May 15, 2024
4c37aec
Update xtts_demo.py
suminhthanh May 15, 2024
f0a22a4
Update xtts_demo.py
suminhthanh May 15, 2024
f31cb45
Update gpt_train.py vixtts model
suminhthanh May 15, 2024
53cf092
Update tokenizer.py
suminhthanh May 15, 2024
fa4500e
Update tokenizer.py
suminhthanh May 15, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions TTS/demos/xtts_ft_demo/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
faster_whisper==1.0.2
gradio==4.7.1
160 changes: 160 additions & 0 deletions TTS/demos/xtts_ft_demo/utils/formatter.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
import os
import gc
import torchaudio
import pandas
from faster_whisper import WhisperModel
from glob import glob

from tqdm import tqdm

import torch
import torchaudio
# torch.set_num_threads(1)

from TTS.tts.layers.xtts.tokenizer import multilingual_cleaners

torch.set_num_threads(16)


import os

audio_types = (".wav", ".mp3", ".flac")


def list_audios(basePath, contains=None):
# return the set of files that are valid
return list_files(basePath, validExts=audio_types, contains=contains)

def list_files(basePath, validExts=None, contains=None):
# loop over the directory structure
for (rootDir, dirNames, filenames) in os.walk(basePath):
# loop over the filenames in the current directory
for filename in filenames:
# if the contains string is not none and the filename does not contain
# the supplied string, then ignore the file
if contains is not None and filename.find(contains) == -1:
continue

# determine the file extension of the current file
ext = filename[filename.rfind("."):].lower()

# check to see if the file is an audio and should be processed
if validExts is None or ext.endswith(validExts):
# construct the path to the audio and yield it
audioPath = os.path.join(rootDir, filename)
yield audioPath

def format_audio_list(audio_files, target_language="en", out_path=None, buffer=0.2, eval_percentage=0.15, speaker_name="coqui", gradio_progress=None):
audio_total_size = 0
# make sure that ooutput file exists
os.makedirs(out_path, exist_ok=True)

# Loading Whisper
device = "cuda" if torch.cuda.is_available() else "cpu"

print("Loading Whisper Model!")
asr_model = WhisperModel("large-v3", device=device, compute_type="float16")

metadata = {"audio_file": [], "text": [], "speaker_name": []}

if gradio_progress is not None:
tqdm_object = gradio_progress.tqdm(audio_files, desc="Formatting...")
else:
tqdm_object = tqdm(audio_files)

for audio_path in tqdm_object:
wav, sr = torchaudio.load(audio_path)
# stereo to mono if needed
if wav.size(0) != 1:
wav = torch.mean(wav, dim=0, keepdim=True)

wav = wav.squeeze()
audio_total_size += (wav.size(-1) / sr)

segments, _ = asr_model.transcribe(audio_path, word_timestamps=True, language=target_language)
segments = list(segments)
i = 0
sentence = ""
sentence_start = None
first_word = True
# added all segments words in a unique list
words_list = []
for _, segment in enumerate(segments):
words = list(segment.words)
words_list.extend(words)

# process each word
for word_idx, word in enumerate(words_list):
if first_word:
sentence_start = word.start
# If it is the first sentence, add buffer or get the begining of the file
if word_idx == 0:
sentence_start = max(sentence_start - buffer, 0) # Add buffer to the sentence start
else:
# get previous sentence end
previous_word_end = words_list[word_idx - 1].end
# add buffer or get the silence midle between the previous sentence and the current one
sentence_start = max(sentence_start - buffer, (previous_word_end + sentence_start)/2)

sentence = word.word
first_word = False
else:
sentence += word.word

if word.word[-1] in ["!", ".", "?"]:
sentence = sentence[1:]
# Expand number and abbreviations plus normalization
sentence = multilingual_cleaners(sentence, target_language)
audio_file_name, _ = os.path.splitext(os.path.basename(audio_path))

audio_file = f"wavs/{audio_file_name}_{str(i).zfill(8)}.wav"

# Check for the next word's existence
if word_idx + 1 < len(words_list):
next_word_start = words_list[word_idx + 1].start
else:
# If don't have more words it means that it is the last sentence then use the audio len as next word start
next_word_start = (wav.shape[0] - 1) / sr

# Average the current word end and next word start
word_end = min((word.end + next_word_start) / 2, word.end + buffer)

absoulte_path = os.path.join(out_path, audio_file)
os.makedirs(os.path.dirname(absoulte_path), exist_ok=True)
i += 1
first_word = True

audio = wav[int(sr*sentence_start):int(sr*word_end)].unsqueeze(0)
# if the audio is too short ignore it (i.e < 0.33 seconds)
if audio.size(-1) >= sr/3:
torchaudio.save(absoulte_path,
audio,
sr
)
else:
continue

metadata["audio_file"].append(audio_file)
metadata["text"].append(sentence)
metadata["speaker_name"].append(speaker_name)

df = pandas.DataFrame(metadata)
df = df.sample(frac=1)
num_val_samples = int(len(df)*eval_percentage)

df_eval = df[:num_val_samples]
df_train = df[num_val_samples:]

df_train = df_train.sort_values('audio_file')
train_metadata_path = os.path.join(out_path, "metadata_train.csv")
df_train.to_csv(train_metadata_path, sep="|", index=False)

eval_metadata_path = os.path.join(out_path, "metadata_eval.csv")
df_eval = df_eval.sort_values('audio_file')
df_eval.to_csv(eval_metadata_path, sep="|", index=False)

# deallocate VRAM and RAM
del asr_model, df_train, df_eval, df, metadata
gc.collect()

return train_metadata_path, eval_metadata_path, audio_total_size
172 changes: 172 additions & 0 deletions TTS/demos/xtts_ft_demo/utils/gpt_train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
import os
import gc

from trainer import Trainer, TrainerArgs

from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
from TTS.utils.manage import ModelManager


def train_gpt(language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path, max_audio_length=255995):
# Logging parameters
RUN_NAME = "GPT_XTTS_FT"
PROJECT_NAME = "XTTS_trainer"
DASHBOARD_LOGGER = "tensorboard"
LOGGER_URI = None

# Set here the path that the checkpoints will be saved. Default: ./run/training/
OUT_PATH = os.path.join(output_path, "run", "training")

# Training Parameters
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False
START_WITH_EVAL = False # if True it will star with evaluation
BATCH_SIZE = batch_size # set here the batch size
GRAD_ACUMM_STEPS = grad_acumm # set here the grad accumulation steps


# Define here the dataset that you want to use for the fine-tuning on.
config_dataset = BaseDatasetConfig(
formatter="coqui",
dataset_name="ft_dataset",
path=os.path.dirname(train_csv),
meta_file_train=train_csv,
meta_file_val=eval_csv,
language=language,
)

# Add here the configs of the datasets
DATASETS_CONFIG_LIST = [config_dataset]

# Define the path where XTTS v2.0.1 files will be downloaded
CHECKPOINTS_OUT_PATH = os.path.join(OUT_PATH, "XTTS_v2.0_original_model_files/")
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)


# DVAE files
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth"
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth"

# Set the path to the downloaded files
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK))
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK))

# download DVAE files if needed
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
print(" > Downloading DVAE files!")
ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)


# Download XTTS v2.0 checkpoint if needed
TOKENIZER_FILE_LINK = "https://huggingface.co/capleaf/viXTTS/resolve/main/vocab.json"
XTTS_CHECKPOINT_LINK = "https://huggingface.co/capleaf/viXTTS/resolve/main/model.pth"
XTTS_CONFIG_LINK = "https://huggingface.co/capleaf/viXTTS/resolve/main/config.json"

# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK)) # vocab.json file
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK)) # model.pth file
XTTS_CONFIG_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CONFIG_LINK)) # config.json file

# download XTTS v2.0 files if needed
if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT):
print(" > Downloading XTTS v2.0 files!")
ModelManager._download_model_files(
[TOKENIZER_FILE_LINK, XTTS_CHECKPOINT_LINK, XTTS_CONFIG_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
)

# init args and config
model_args = GPTArgs(
max_conditioning_length=132300, # 6 secs
min_conditioning_length=66150, # 3 secs
debug_loading_failures=False,
max_wav_length=max_audio_length, # ~11.6 seconds
max_text_length=200,
mel_norm_file=MEL_NORM_FILE,
dvae_checkpoint=DVAE_CHECKPOINT,
xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune
tokenizer_file=TOKENIZER_FILE,
gpt_num_audio_tokens=1026,
gpt_start_audio_token=1024,
gpt_stop_audio_token=1025,
gpt_use_masking_gt_prompt_approach=True,
gpt_use_perceiver_resampler=True,
)
# define audio config
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
# training parameters config
config = GPTTrainerConfig(
epochs=num_epochs,
output_path=OUT_PATH,
model_args=model_args,
run_name=RUN_NAME,
project_name=PROJECT_NAME,
run_description="""
GPT XTTS training
""",
dashboard_logger=DASHBOARD_LOGGER,
logger_uri=LOGGER_URI,
audio=audio_config,
batch_size=BATCH_SIZE,
batch_group_size=48,
eval_batch_size=BATCH_SIZE,
num_loader_workers=8,
eval_split_max_size=256,
print_step=50,
plot_step=100,
log_model_step=100,
save_step=1000,
save_n_checkpoints=1,
save_checkpoints=True,
# target_loss="loss",
print_eval=False,
# Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters.
optimizer="AdamW",
optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS,
optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2},
lr=5e-06, # learning rate
lr_scheduler="MultiStepLR",
# it was adjusted accordly for the new step scheme
lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1},
test_sentences=[],
)

# init the model from config
model = GPTTrainer.init_from_config(config)

# load training samples
train_samples, eval_samples = load_tts_samples(
DATASETS_CONFIG_LIST,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)

# init the trainer and 🚀
trainer = Trainer(
TrainerArgs(
restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
skip_train_epoch=False,
start_with_eval=START_WITH_EVAL,
grad_accum_steps=GRAD_ACUMM_STEPS,
),
config,
output_path=OUT_PATH,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit()

# get the longest text audio file to use as speaker reference
samples_len = [len(item["text"].split(" ")) for item in train_samples]
longest_text_idx = samples_len.index(max(samples_len))
speaker_ref = train_samples[longest_text_idx]["audio_file"]

trainer_out_path = trainer.output_path

# deallocate VRAM and RAM
del model, trainer, train_samples, eval_samples
gc.collect()

return XTTS_CONFIG_FILE, XTTS_CHECKPOINT, TOKENIZER_FILE, trainer_out_path, speaker_ref
Loading