-
Notifications
You must be signed in to change notification settings - Fork 8
/
gs_power_combo.R
257 lines (239 loc) · 7.32 KB
/
gs_power_combo.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright (c) 2024 Merck & Co., Inc., Rahway, NJ, USA and its affiliates.
# All rights reserved.
#
# This file is part of the gsDesign2 program.
#
# gsDesign2 is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#' Group sequential design power using MaxCombo test under non-proportional hazards
#'
#' @inheritParams gs_design_combo
#'
#' @return A list with input parameters, enrollment rate, analysis, and bound.
#'
#' @section Specification:
#' \if{latex}{
#' \itemize{
#' \item Validate if lower and upper bounds have been specified.
#' \item Extract info, info_fh, theta_fh and corr_fh from utility.
#' \item Extract sample size via the maximum sample size of info.
#' \item Calculate information fraction either for fixed or group sequential design.
#' \item Compute spending function using \code{gs_bound()}.
#' \item Compute probability of crossing bounds under the null and alternative
#' hypotheses using \code{gs_prob_combo()}.
#' \item Export required information for boundary and crossing probability
#' }
#' }
#' \if{html}{The contents of this section are shown in PDF user manual only.}
#'
#' @importFrom mvtnorm GenzBretz
#'
#' @export
#'
#' @examples
#' library(dplyr)
#' library(mvtnorm)
#' library(gsDesign)
#' library(gsDesign2)
#'
#' enroll_rate <- define_enroll_rate(
#' duration = 12,
#' rate = 500 / 12
#' )
#'
#' fail_rate <- define_fail_rate(
#' duration = c(4, 100),
#' fail_rate = log(2) / 15, # median survival 15 month
#' hr = c(1, .6),
#' dropout_rate = 0.001
#' )
#'
#' fh_test <- rbind(
#' data.frame(rho = 0, gamma = 0, tau = -1, test = 1, analysis = 1:3, analysis_time = c(12, 24, 36)),
#' data.frame(rho = c(0, 0.5), gamma = 0.5, tau = -1, test = 2:3, analysis = 3, analysis_time = 36)
#' )
#'
#' # Example 1 ----
#' # Minimal Information Fraction derived bound
#' \donttest{
#' gs_power_combo(
#' enroll_rate = enroll_rate,
#' fail_rate = fail_rate,
#' fh_test = fh_test,
#' upper = gs_spending_combo,
#' upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
#' lower = gs_spending_combo,
#' lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)
#' )
#' }
gs_power_combo <- function(
enroll_rate = define_enroll_rate(
duration = 12,
rate = 500 / 12
),
fail_rate = define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 15,
hr = c(1, .6),
dropout_rate = 0.001
),
fh_test = rbind(
data.frame(
rho = 0, gamma = 0, tau = -1, test = 1,
analysis = 1:3, analysis_time = c(12, 24, 36)
),
data.frame(
rho = c(0, 0.5), gamma = 0.5, tau = -1, test = 2:3,
analysis = 3, analysis_time = 36
)
),
ratio = 1,
binding = FALSE,
upper = gs_b,
upar = c(3, 2, 1),
lower = gs_b,
lpar = c(-1, 0, 1),
algorithm = GenzBretz(maxpts = 1e5, abseps = 1e-5),
...) {
# Currently only support user-defined lower and upper bound
stopifnot(identical(upper, gs_b) | identical(upper, gs_spending_combo))
stopifnot(identical(lower, gs_b) | identical(lower, gs_spending_combo))
# Get the number of analysis/test ----
n_analysis <- length(unique(fh_test$analysis))
n_test <- max(fh_test$test)
# Obtain utilities
utility <- gs_utility_combo(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
fh_test = fh_test,
ratio = ratio,
algorithm = algorithm, ...
)
info <- utility$info_all
info_fh <- utility$info
theta_fh <- utility$theta
corr_fh <- utility$corr
# Sample size
sample_size <- max(info$n)
# Information Fraction
if (length(unique(fh_test$analysis)) == 1) {
# Fixed design
min_info_frac <- 1
} else {
info_frac <- tapply(info$info0, info$test, function(x) x / max(x))
min_info_frac <- apply(do.call(rbind, info_frac), 2, min)
}
# Obtain spending function
bound <- gs_bound(
alpha = upper(upar, info = min_info_frac),
beta = lower(lpar, info = min_info_frac),
analysis = info_fh$analysis,
theta = theta_fh * sqrt(sample_size),
corr = corr_fh,
binding_lower_bound = binding,
algorithm = algorithm,
alpha_bound = identical(upper, gs_b),
beta_bound = identical(lower, gs_b),
...
)
# Probability Cross Boundary under Alternative
prob <- gs_prob_combo(
upper_bound = bound$upper,
lower_bound = bound$lower,
analysis = info_fh$analysis,
theta = theta_fh * sqrt(sample_size),
corr = corr_fh,
algorithm = algorithm, ...
)
# Probability Cross Boundary under Null
prob_null <- gs_prob_combo(
upper_bound = bound$upper,
lower_bound = if (binding) {
bound$lower
} else {
rep(-Inf, nrow(bound))
},
analysis = info_fh$analysis,
theta = rep(0, nrow(info_fh)),
corr = corr_fh,
algorithm = algorithm, ...
)
prob$probability_null <- prob_null$probability
# Prepare output
db <- merge(
data.frame(analysis = 1:(nrow(prob) / 2), prob, z = unlist(bound)),
info_fh %>%
tibble::as_tibble() %>%
select(analysis, time, n, event) %>%
unique()
) %>%
arrange(analysis, desc(bound))
# Get bounds to output ----
bound <- db %>%
dplyr::mutate(`nominal p` = pnorm(z * (-1))) %>%
dplyr::select(analysis, bound, probability, probability_null, z, `nominal p`) %>%
dplyr::rename(probability0 = probability_null) %>%
arrange(analysis, desc(bound))
# Get analysis summary to output ----
# check if rho, gamma = 0 is included in fh_test
tmp <- fh_test %>%
filter(rho == 0 & gamma == 0 & tau == -1) %>%
select(test) %>%
unlist() %>%
as.numeric() %>%
unique()
if (length(tmp) != 0) {
ahr_dis <- utility$info_all %>%
filter(test == tmp) %>%
select(ahr) %>%
unlist() %>%
as.numeric()
} else {
ahr_dis <- gs_info_wlr(
enroll_rate,
fail_rate,
ratio,
event = unique(utility$info_all$event),
analysis_time = unique(utility$info_all$time),
weight = eval(parse(text = get_combo_weight(rho = 0, gamma = 0, tau = -1)))
)$ahr
}
analysis <- utility$info_all %>%
select(analysis, test, time, n, event) %>%
mutate(
theta = utility$info_all$theta,
event_frac = event / tapply(event, test, function(x) max(x)) %>%
unlist() %>%
as.numeric()
) %>%
select(analysis, time, n, event, event_frac) %>%
unique() %>%
mutate(ahr = ahr_dis) %>%
mutate(
n = n * sample_size / max(info_fh$n),
event = event * n / max(info_fh$n)
) %>%
arrange(analysis)
# Output ----
output <- list(
enroll_rate = enroll_rate %>% mutate(rate = rate * max(analysis$n) / sum(rate * duration)),
fail_rate = fail_rate,
bound = bound,
analysis = analysis
)
class(output) <- c("combo", "gs_design", class(output))
if (!binding) {
class(output) <- c("non_binding", class(output))
}
return(output)
}