-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradeCorrelation.py
43 lines (32 loc) · 1.29 KB
/
gradeCorrelation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import pandas as pd
import numpy as np
import sklearn
from sklearn import linear_model
from sklearn.utils import shuffle
#takes in csv file and stores in pandas datafram
data = pd.read_csv("student-mat.csv", sep = ";")
#omits everything from data except for these six desired atributes
data = data[["G1", "G2", "G3", "studytime", "failures", "absences"]]
#variable predict = G3 aka label
predict = "G3"
#return new dataframe withouy g3, training data, has all attributes
x = np.array(data.drop([predict], 1))
#all labes
y = np.array(data[predict])
#takes x and y, splits them up into 4 different arrays
#x and y train are dections of X and Y
#tests test for accuracy
x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(x, y, test_size = 0.1)
#creates empty linear regression model frame
linear = linear_model.LinearRegression()
#fits linear regression model to fix data from x_train and y_train
linear.fit(x_train, y_train)
#computes accuracy of linear model relative to real values
acc = linear.score(x_test, y_test)
print(acc)
#prints coeffiecents of slope for 5d projection and intercept
print("Co: \n", linear.coef_)
print('Intercept: \n', linear.intercept_)
predictions = linear.predict(x_test)
for x in range(len(predictions)):
print(predictions[x], x_test[x], y_test[x])