-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
348 lines (299 loc) · 13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import os
import time
import numpy as np
import shutil
import torch
import torch.utils.data.distributed
from torch.utils.data import DataLoader
from data_loaders import dataset_dict
from data_loaders.create_training_dataset import create_training_dataset
from models.render_ray import render_rays
from models.render_image import render_single_image
from models.model import GRTModel
from models.sample_ray import RaySamplerSingleImage
from models.criterion import Criterion
from utils import img2mse, mse2psnr, img_HWC2CHW, colorize, cycle, img2psnr
import config
import torch.distributed as dist
from models.projection import Projector
import imageio
from torch.utils.tensorboard import SummaryWriter
def worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
def synchronize():
"""
Helper function to synchronize (barrier) among all processes when
using distributed training
"""
if not dist.is_available():
return
if not dist.is_initialized():
return
world_size = dist.get_world_size()
if world_size == 1:
return
dist.barrier()
def train(args):
device = "cuda:{}".format(args.local_rank)
out_folder = os.path.join(args.rootdir, "out", args.expname)
print("outputs will be saved to {}".format(out_folder))
os.makedirs(out_folder, exist_ok=True)
# save the args and config files
f = os.path.join(out_folder, "args.txt")
with open(f, "w") as file:
for arg in sorted(vars(args)):
attr = getattr(args, arg)
file.write("{} = {}\n".format(arg, attr))
if args.config is not None:
f = os.path.join(out_folder, "config.txt")
if not os.path.isfile(f):
shutil.copy(args.config, f)
# log file
if args.local_rank==0:
writer = SummaryWriter(out_folder)
# create training dataset
train_dataset, train_sampler = create_training_dataset(args)
# currently only support batch_size=1 (i.e., one set of target and source views) for each GPU node
# please use distributed parallel on multiple GPUs to train multiple target views per batch
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=1,
worker_init_fn=lambda _: np.random.seed(),
num_workers=args.workers,
pin_memory=True,
sampler=train_sampler,
shuffle=True if train_sampler is None else False,
)
# create validation dataset
val_dataset = dataset_dict[args.eval_dataset](args, "validation", scenes=args.eval_scenes)
val_loader = DataLoader(val_dataset, batch_size=1)
val_loader_iterator = iter(cycle(val_loader))
# Create GRT model
model = GRTModel(
args, load_opt=not args.no_load_opt, load_scheduler=not args.no_load_scheduler
)
# create projector
projector = Projector(device=device)
# Create criterion
criterion = Criterion(args.load_depth)
scalars_to_log = {}
global_step = model.start_step + 1
epoch = 0
while global_step < model.start_step + args.n_iters + 1:
np.random.seed()
for train_data in train_loader:
time0 = time.time()
if args.distributed:
train_sampler.set_epoch(epoch)
# Start of core optimization loop
# load training rays
ray_sampler = RaySamplerSingleImage(train_data, device)
# print('train_data["src_rgbs"][0]',train_data["src_rgbs"][0].shape)
N_rand = int(
1.0 * args.N_rand * args.num_source_views / train_data["src_rgbs"][0].shape[0]
)
ray_batch = ray_sampler.random_sample(
N_rand,
sample_mode=args.sample_mode,
center_ratio=args.center_ratio,
)
featmaps = model.feature_net(ray_batch["src_rgbs"].squeeze(0).permute(0, 3, 1, 2))
ret = render_rays(
ray_batch=ray_batch,
model=model,
projector=projector,
featmaps=featmaps,
N_samples=args.N_samples,
inv_uniform=args.inv_uniform,
N_importance=args.N_importance,
det=args.det,
white_bkgd=args.white_bkgd,
ret_alpha=args.N_importance > 0,
single_net=args.single_net,
use_depth = args.load_depth
)
# compute loss
model.optimizer.zero_grad()
loss, scalars_to_log = criterion(ret["outputs_coarse"], ray_batch, scalars_to_log)
if ret["outputs_fine"] is not None:
fine_loss, scalars_to_log = criterion(
ret["outputs_fine"], ray_batch, scalars_to_log
)
loss += fine_loss
loss.backward()
scalars_to_log["loss"] = loss.item()
model.optimizer.step()
model.scheduler.step()
scalars_to_log["lr"] = model.scheduler.get_last_lr()[0]
# end of core optimization loop
dt = time.time() - time0
# Rest is logging
if args.local_rank == 0:
if global_step % args.i_print == 0 or global_step < 10:
# write mse and psnr stats
mse_error = img2mse(ret["outputs_coarse"]["rgb"], ray_batch["rgb"]).item()
scalars_to_log["train/coarse-loss"] = mse_error
psnr = mse2psnr(mse_error)
scalars_to_log["train/coarse-psnr-training-batch"] = psnr
writer.add_scalar("coarse_loss", mse_error, global_step)
writer.add_scalar('loss', loss.item(), global_step)
writer.add_scalar('psnr_train', psnr, global_step)
if ret["outputs_fine"] is not None:
mse_error = img2mse(ret["outputs_fine"]["rgb"], ray_batch["rgb"]).item()
scalars_to_log["train/fine-loss"] = mse_error
scalars_to_log["train/fine-psnr-training-batch"] = mse2psnr(mse_error)
if 'depth' in ray_batch.keys():
depth_gt = ray_batch['depth']
depth_pred = ret["outputs_coarse"]['depth_pred']
mask_depth = (depth_gt!=0)
depth_loss = torch.nn.functional.l1_loss(depth_pred[mask_depth], depth_gt[mask_depth])
scalars_to_log["train/depth-loss"] = depth_loss
logstr = "{} Epoch: {} step: {} ".format(args.expname, epoch, global_step)
for k in scalars_to_log.keys():
logstr += " {}: {:.6f}".format(k, scalars_to_log[k])
print(logstr)
print("each iter time {:.05f} seconds".format(dt))
if global_step % args.i_weights == 0:
print("Saving checkpoints at {} to {}...".format(global_step, out_folder))
fpath = os.path.join(out_folder, "model_{:06d}.pth".format(global_step))
model.save_model(fpath)
if global_step % args.i_img == 0:
# if global_step % 1 == 0:
print("Logging a random validation view...")
val_data = next(val_loader_iterator)
tmp_ray_sampler = RaySamplerSingleImage(
val_data, device, render_stride=args.render_stride
)
H, W = tmp_ray_sampler.H, tmp_ray_sampler.W
gt_img = tmp_ray_sampler.rgb.reshape(H, W, 3)
log_view(
global_step,
args,
model,
tmp_ray_sampler,
projector,
gt_img,
render_stride=args.render_stride,
prefix="val/",
out_folder=out_folder,
ret_alpha=args.N_importance > 0,
single_net=args.single_net,
use_depth = args.load_depth
)
torch.cuda.empty_cache()
print("Logging current training view...")
tmp_ray_train_sampler = RaySamplerSingleImage(
train_data, device, render_stride=1
)
H, W = tmp_ray_train_sampler.H, tmp_ray_train_sampler.W
gt_img = tmp_ray_train_sampler.rgb.reshape(H, W, 3)
log_view(
global_step,
args,
model,
tmp_ray_train_sampler,
projector,
gt_img,
render_stride=1,
prefix="train/",
out_folder=out_folder,
ret_alpha=args.N_importance > 0,
single_net=args.single_net,
use_depth = args.load_depth
)
global_step += 1
if global_step > model.start_step + args.n_iters + 1:
break
epoch += 1
@torch.no_grad()
def log_view(
global_step,
args,
model,
ray_sampler,
projector,
gt_img,
render_stride=1,
prefix="",
out_folder="",
ret_alpha=False,
single_net=True,
use_depth = False,
):
model.switch_to_eval()
with torch.no_grad():
ray_batch = ray_sampler.get_all()
if model.feature_net is not None:
featmaps = model.feature_net(ray_batch["src_rgbs"].squeeze(0).permute(0, 3, 1, 2))
else:
featmaps = [None, None]
ret = render_single_image(
ray_sampler=ray_sampler,
ray_batch=ray_batch,
model=model,
projector=projector,
chunk_size=args.chunk_size,
N_samples=args.N_samples,
inv_uniform=args.inv_uniform,
det=True,
N_importance=args.N_importance,
white_bkgd=args.white_bkgd,
render_stride=render_stride,
featmaps=featmaps,
ret_alpha=ret_alpha,
single_net=single_net,
use_depth = use_depth
)
average_im = ray_sampler.src_rgbs.cpu().mean(dim=(0, 1))
if args.render_stride != 1:
gt_img = gt_img[::render_stride, ::render_stride]
average_im = average_im[::render_stride, ::render_stride]
rgb_gt = img_HWC2CHW(gt_img)
average_im = img_HWC2CHW(average_im)
rgb_pred = img_HWC2CHW(ret["outputs_coarse"]["rgb"].detach().cpu())
h_max = max(rgb_gt.shape[-2], rgb_pred.shape[-2], average_im.shape[-2])
w_max = max(rgb_gt.shape[-1], rgb_pred.shape[-1], average_im.shape[-1])
rgb_im = torch.zeros(3, h_max, 3 * w_max)
rgb_im[:, : average_im.shape[-2], : average_im.shape[-1]] = average_im
rgb_im[:, : rgb_gt.shape[-2], w_max : w_max + rgb_gt.shape[-1]] = rgb_gt
rgb_im[:, : rgb_pred.shape[-2], 2 * w_max : 2 * w_max + rgb_pred.shape[-1]] = rgb_pred
if "depth_pred" in ret["outputs_coarse"].keys():
# print('ret["outputs_coarse"]["depth_pred"]',ret["outputs_coarse"]["depth_pred"].shape)
depth_pred = ret["outputs_coarse"]["depth_pred"].detach().cpu()
depth_im = img_HWC2CHW(colorize(depth_pred, cmap_name="jet"))
elif "depth" in ret["outputs_coarse"].keys():
depth_pred = ret["outputs_coarse"]["depth"].detach().cpu()
depth_im = img_HWC2CHW(colorize(depth_pred, cmap_name="jet"))
else:
depth_im = None
if ret["outputs_fine"] is not None:
rgb_fine = img_HWC2CHW(ret["outputs_fine"]["rgb"].detach().cpu())
rgb_fine_ = torch.zeros(3, h_max, w_max)
rgb_fine_[:, : rgb_fine.shape[-2], : rgb_fine.shape[-1]] = rgb_fine
rgb_im = torch.cat((rgb_im, rgb_fine_), dim=-1)
depth_pred = torch.cat((depth_pred, ret["outputs_fine"]["depth"].detach().cpu()), dim=-1)
depth_im = img_HWC2CHW(colorize(depth_pred, cmap_name="jet"))
rgb_im = rgb_im.permute(1, 2, 0).detach().cpu().numpy()
filename = os.path.join(out_folder, prefix[:-1] + "_{:03d}.png".format(global_step))
imageio.imwrite(filename, rgb_im)
if depth_im is not None:
depth_im = depth_im.permute(1, 2, 0).detach().cpu().numpy()
filename = os.path.join(out_folder, prefix[:-1] + "depth_{:03d}.png".format(global_step))
imageio.imwrite(filename, depth_im)
# write scalar
pred_rgb = (
ret["outputs_fine"]["rgb"]
if ret["outputs_fine"] is not None
else ret["outputs_coarse"]["rgb"]
)
psnr_curr_img = img2psnr(pred_rgb.detach().cpu(), gt_img)
print(prefix + "psnr_image: ", psnr_curr_img)
model.switch_to_train()
if __name__ == "__main__":
parser = config.config_parser()
args = parser.parse_args()
if args.distributed:
torch.distributed.init_process_group(backend="nccl", init_method="env://")
args.local_rank = int(os.environ.get("LOCAL_RANK"))
torch.cuda.set_device(args.local_rank)
train(args)