-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
301 lines (237 loc) · 8.59 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import torch
import numpy as np
from matplotlib.backends.backend_agg import FigureCanvasAgg
from matplotlib.figure import Figure
import matplotlib as mpl
from matplotlib import cm
import cv2
import os
from datetime import datetime
import shutil
import torch.nn.functional as F
from torch.autograd import Variable
from math import exp
import lpips
lpips_alex = lpips.LPIPS(net="alex") # best forward scores
lpips_vgg = lpips.LPIPS(
net="vgg"
) # closer to "traditional" perceptual loss, when used for optimization
HUGE_NUMBER = 1e10
TINY_NUMBER = 1e-6 # float32 only has 7 decimal digits precision
img_HWC2CHW = lambda x: x.permute(2, 0, 1)
gray2rgb = lambda x: x.unsqueeze(2).repeat(1, 1, 3)
to8b = lambda x: (255 * np.clip(x, 0, 1)).astype(np.uint8)
mse2psnr = lambda x: -10.0 * np.log(x + TINY_NUMBER) / np.log(10.0)
def save_current_code(outdir):
now = datetime.now() # current date and time
date_time = now.strftime("%m_%d-%H:%M:%S")
src_dir = "."
dst_dir = os.path.join(outdir, "code_{}".format(date_time))
shutil.copytree(
src_dir,
dst_dir,
ignore=shutil.ignore_patterns(
"data*",
"pretrained*",
"logs*",
"out*",
"*.png",
"*.mp4",
"*__pycache__*",
"*.git*",
"*.idea*",
"*.zip",
"*.jpg",
),
)
def img2mse(x, y, mask=None):
"""
:param x: img 1, [(...), 3]
:param y: img 2, [(...), 3]
:param mask: optional, [(...)]
:return: mse score
"""
if mask is None:
return torch.mean((x - y) * (x - y))
else:
return torch.sum((x - y) * (x - y) * mask.unsqueeze(-1)) / (
torch.sum(mask) * x.shape[-1] + TINY_NUMBER
)
def img2psnr(x, y, mask=None):
return mse2psnr(img2mse(x, y, mask).item())
def cycle(iterable):
while True:
for x in iterable:
yield x
def get_vertical_colorbar(h, vmin, vmax, cmap_name="jet", label=None, cbar_precision=2):
"""
:param w: pixels
:param h: pixels
:param vmin: min value
:param vmax: max value
:param cmap_name:
:param label
:return:
"""
fig = Figure(figsize=(2, 8), dpi=100)
fig.subplots_adjust(right=1.5)
canvas = FigureCanvasAgg(fig)
# Do some plotting.
ax = fig.add_subplot(111)
cmap = cm.get_cmap(cmap_name)
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
tick_cnt = 6
tick_loc = np.linspace(vmin, vmax, tick_cnt)
cb1 = mpl.colorbar.ColorbarBase(
ax, cmap=cmap, norm=norm, ticks=tick_loc, orientation="vertical"
)
tick_label = [str(np.round(x, cbar_precision)) for x in tick_loc]
if cbar_precision == 0:
tick_label = [x[:-2] for x in tick_label]
cb1.set_ticklabels(tick_label)
cb1.ax.tick_params(labelsize=18, rotation=0)
if label is not None:
cb1.set_label(label)
fig.tight_layout()
canvas.draw()
s, (width, height) = canvas.print_to_buffer()
im = np.frombuffer(s, np.uint8).reshape((height, width, 4))
im = im[:, :, :3].astype(np.float32) / 255.0
if h != im.shape[0]:
w = int(im.shape[1] / im.shape[0] * h)
im = cv2.resize(im, (w, h), interpolation=cv2.INTER_AREA)
return im
def colorize_np(
x,
cmap_name="jet",
mask=None,
range=None,
append_cbar=False,
cbar_in_image=False,
cbar_precision=2,
):
"""
turn a grayscale image into a color image
:param x: input grayscale, [H, W]
:param cmap_name: the colorization method
:param mask: the mask image, [H, W]
:param range: the range for scaling, automatic if None, [min, max]
:param append_cbar: if append the color bar
:param cbar_in_image: put the color bar inside the image to keep the output image the same size as the input image
:return: colorized image, [H, W]
"""
if range is not None:
vmin, vmax = range
elif mask is not None:
# vmin, vmax = np.percentile(x[mask], (2, 100))
vmin = np.min(x[mask][np.nonzero(x[mask])])
vmax = np.max(x[mask])
# vmin = vmin - np.abs(vmin) * 0.01
x[np.logical_not(mask)] = vmin
# print(vmin, vmax)
else:
vmin, vmax = np.percentile(x, (1, 100))
vmax += TINY_NUMBER
x = np.clip(x, vmin, vmax)
x = (x - vmin) / (vmax - vmin)
# x = np.clip(x, 0., 1.)
cmap = cm.get_cmap(cmap_name)
x_new = cmap(x)[:, :, :3]
if mask is not None:
mask = np.float32(mask[:, :, np.newaxis])
x_new = x_new * mask + np.ones_like(x_new) * (1.0 - mask)
cbar = get_vertical_colorbar(
h=x.shape[0], vmin=vmin, vmax=vmax, cmap_name=cmap_name, cbar_precision=cbar_precision
)
if append_cbar:
if cbar_in_image:
x_new[:, -cbar.shape[1] :, :] = cbar
else:
x_new = np.concatenate((x_new, np.zeros_like(x_new[:, :5, :]), cbar), axis=1)
return x_new
else:
return x_new
# tensor
def colorize(x, cmap_name="jet", mask=None, range=None, append_cbar=False, cbar_in_image=False):
device = x.device
x = x.cpu().numpy()
if mask is not None:
mask = mask.cpu().numpy() > 0.99
kernel = np.ones((3, 3), np.uint8)
mask = cv2.erode(mask.astype(np.uint8), kernel, iterations=1).astype(bool)
x = colorize_np(x, cmap_name, mask, range, append_cbar, cbar_in_image)
x = torch.from_numpy(x).to(device)
return x
def gaussian(window_size, sigma):
gauss = torch.Tensor(
[exp(-((x - window_size // 2) ** 2) / float(2 * sigma**2)) for x in range(window_size)]
)
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
C1 = 0.01**2
C2 = 0.03**2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
(mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)
)
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
class SSIM(torch.nn.Module):
def __init__(self, window_size=11, size_average=True):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 1
self.window = create_window(window_size, self.channel)
def forward(self, img1, img2):
(_, channel, _, _) = img1.size()
if channel == self.channel and self.window.data.type() == img1.data.type():
window = self.window
else:
window = create_window(self.window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
self.window = window
self.channel = channel
return _ssim(img1, img2, window, self.window_size, channel, self.size_average)
def ssim_utils(img1, img2, window_size=11, size_average=True):
(_, channel, _, _) = img1.size()
window = create_window(window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)
def ssim(img1, img2, window_size=11, size_average=True, format="NCHW"):
if format == "HWC":
img1 = img1.permute([2, 0, 1])[None, ...]
img2 = img2.permute([2, 0, 1])[None, ...]
elif format == "NHWC":
img1 = img1.permute([0, 3, 1, 2])
img2 = img2.permute([0, 3, 1, 2])
return ssim_utils(img1, img2, window_size, size_average)
def lpips(img1, img2, net="vgg", format="NCHW"):
if format == "HWC":
img1 = img1.permute([2, 0, 1])[None, ...]
img2 = img2.permute([2, 0, 1])[None, ...]
elif format == "NHWC":
img1 = img1.permute([0, 3, 1, 2])
img2 = img2.permute([0, 3, 1, 2])
if net == "alex":
return lpips_alex(img1, img2)
elif net == "vgg":
return lpips_vgg(img1, img2)