This repository has been archived by the owner on Feb 21, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathqRBM_final.py
326 lines (216 loc) · 9.53 KB
/
qRBM_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import numpy as np
from scipy.optimize import minimize
from scipy.optimize import fmin_bfgs
import pyquil.quil as pq
import pyquil.api as api
from pyquil.paulis import *
from pyquil.gates import *
from grove.pyqaoa.qaoa import QAOA
from grove.pyvqe.vqe import VQE
import json
import copy
class qRBM:
"""
Quantum Classical Hybrid RBM implementation.
"""
def __init__(self, QM, num_visible, num_hidden, n_quantum_measurements=None, verbose=False):
"""
create an RBM with the specified number of visible and hidden units
Params
-------------------------------------------------------------
QM: (rigetti QVM connection) QVM connection for which to use for quantum circuit simulation
num_visible: (int) Number of visible units in RBM
num_hidden (int) Number of hidden units in RBM
n_quantum_measurements: (int) Number of measuremants to use for Quantum expectation estimation (default to None which does analytical)
verbose: (bool) Verbosity of qRBM
--------------------------------------------------------------
"""
self.n_visible = num_visible
self.n_hidden = num_hidden
self.qvm = QM
self.verbose = verbose
self.n_quantum_measurements = n_quantum_measurements
#tweak at your leisure.
self.n_qaoa_steps = 1
self.beta_temp = 2.0
#don't tweak below here unless you know what you're doing.
# only want this for built in expectation calculations...
self.vqe_inst = VQE(minimizer=minimize,
minimizer_kwargs={'method': 'nelder-mead'})
self.state_prep_angle = np.arctan(np.e**(-self.beta_temp/2.0)) * 2.0
self.WEIGHTS = np.asarray(np.random.uniform(
low=-0.1 * np.sqrt(6. / (num_hidden + num_visible)),
high=0.1 * np.sqrt(6. / (num_hidden + num_visible)),
size=(num_visible, num_hidden)))
# IN THIS VERSION BIAS IS UNUSED!
self.BIAS = np.asarray(np.random.uniform(
low=-0.1 * np.sqrt(6. / (num_hidden + num_visible)),
high=0.1 * np.sqrt(6. / (num_hidden + num_visible)),
size=(num_hidden)))
#BIASES ARE ON HIDDENS.
# W[i][j] = ith visible to jth hidden
# Bias[j] = bias on jth hidden.
def make_unclamped_QAOA(self):
"""
Internal helper function for building QAOA circuit to get RBM expectation
using Rigetti Quantum simulator
Returns
---------------------------------------------------
nus: (list) optimal parameters for cost hamiltonians in each layer of QAOA
gammas: (list) optimal parameters for mixer hamiltonians in each layer of QAOA
para_prog: (fxn closure) fxn to return QAOA circuit for any supplied nus and gammas
---------------------------------------------------
"""
visible_indices = [i for i in range(0, self.n_visible)]
hidden_indices = [i + self.n_visible for i in range(0, self.n_hidden)]
full_cost_operator = []
full_mixer_operator = []
for i in visible_indices:
for j in hidden_indices:
full_cost_operator.append(PauliSum([PauliTerm("Z", i, -1.0 * self.WEIGHTS[i][j - self.n_visible]) * PauliTerm("Z", j, 1.0)]))
# UNCOMMENT THIS TO ADD BIAS IN *untested* in this version of code*
# for i in hidden_indices:
# full_cost_operator.append(PauliSum([PauliTerm("Z", i, -1.0 * self.BIAS[i - self.n_visible])]))
for i in hidden_indices + visible_indices:
full_mixer_operator.append(PauliSum([PauliTerm("X", i, 1.0)]))
n_system = len(visible_indices) + len(hidden_indices)
state_prep = pq.Program()
for i in visible_indices + hidden_indices:
tmp = pq.Program()
tmp.inst(RX(self.state_prep_angle, i + n_system), CNOT(i + n_system, i))
state_prep += tmp
full_QAOA = QAOA(self.qvm,
n_qubits=n_system,
steps=self.n_qaoa_steps,
ref_hamiltonian=full_mixer_operator,
cost_ham=full_cost_operator,
driver_ref=state_prep,
store_basis=True,
minimizer=fmin_bfgs,
minimizer_kwargs={'maxiter':50},
vqe_args={'samples': self.n_quantum_measurements},
rand_seed=1234)
nus, gammas = full_QAOA.get_angles()
if self.verbose:
print 'Found following for nus and gammas from QAOA'
print nus
print gammas
print '-'*80
program = full_QAOA.get_parameterized_program()
return nus, gammas, program, 0 #full_QAOA.result['fun']
def sigmoid(self, x):
"""
simple helper function to compute sigmoid across data matrix
where the rows are samples
Params
-----------------
DATA: (array) matrix of data where rows are samples
-----------------
Returns
-----------------
result: (array) that same matrix but with sigmoid applied to entries
-----------------
"""
return 1.0 / (1.0 + np.exp(-x))
def train(self, DATA, learning_rate=0.1, n_epochs=100, quantum_percentage=1.0, classical_percentage=0.0):
"""
Train an RBM with mixture of quantum and classical update rules
Params
-------------------------------------------------------------------------
DATA: (list) matrix with rows as data samples
learning_rate: (float) the learning rate used in the update rule by the rbm good value is 0.1
n_epochs: (int) number of weight update loops to do over RBM weights
quantum_percentage: (float) fraction of update rule to be dictated by quantum circuit
classical_percentage: (float) fraction of update rule to be dictated by classical CD-1
--------------------------------------------------------------------------
NOTE: quantum_percentage + classical_percentage =1.0 must hold!!!
"""
assert(quantum_percentage + classical_percentage == 1.0)
DATA = np.asarray(DATA)
for epoch in range(n_epochs):
print 'Beginning epoch', epoch
visible_indices = [i for i in range(0, self.n_visible)]
hidden_indices = [i + self.n_visible for i in range(0, self.n_hidden)]
new_weights = copy.deepcopy(self.WEIGHTS)
new_bias = copy.deepcopy(self.BIAS)
model_nus, model_gammas, model_para_prog, _ = self.make_unclamped_QAOA()
model_sampling_prog = model_para_prog(np.hstack((model_nus, model_gammas)))
print 'Found model expectation program....'
neg_phase_quantum = np.zeros_like(self.WEIGHTS)
# UNCOMMENT FOR BIAS
# neg_phase_quantum_bias = np.zeros_like(self.BIAS)
for a in range(self.n_visible):
for b in range(self.n_hidden):
model_expectation = self.vqe_inst.expectation(model_sampling_prog,
sZ(visible_indices[a]) * sZ(hidden_indices[b]),
self.n_quantum_measurements,
self.qvm)
neg_phase_quantum[a][b] = model_expectation
neg_phase_quantum *= (1. / float(len(DATA)))
# UNCOMMENT THIS FOR NEGATIVE PHASE COMPONENT OF BIAS
# for b in range(self.n_hidden):
# model_expectation = self.vqe_inst.expectation(model_sampling_prog,
# sZ(hidden_indices[b]),
# n_measurements,
# self.qvm)
# neg_phase_quantum_bias[b] = model_expectation
#IF ADDING BIAS MODIFY THIS AS WELL!!!
#follow all standard conventions...
hidden_probs = self.sigmoid(np.dot(DATA, self.WEIGHTS))
pos_phase = np.dot(DATA.T, hidden_probs) * (1./float(len(DATA)))
pos_hidden_states = hidden_probs > np.random.rand(len(DATA), self.n_hidden)
neg_visible_activations = np.dot(pos_hidden_states, self.WEIGHTS.T)
neg_visible_probs = self.sigmoid(neg_visible_activations)
neg_hidden_activations = np.dot(neg_visible_probs, self.WEIGHTS)
neg_hidden_probs = self.sigmoid(neg_hidden_activations)
neg_phase_classical = np.dot(neg_visible_probs.T, neg_hidden_probs) * 1./len(DATA)
if self.verbose:
print 'POSITIVE PHASE,'
print pos_phase
print 'NEGATIVE PHASE (QUANTUM)'
print neg_phase_quantum
print 'Negative PHASE(classical)'
print neg_phase_classical
print 'WEIGHTS'
print self.WEIGHTS
print '-'*80
# can update weights with weighted avg of quantum and classical.
new_weights += learning_rate * (pos_phase - (classical_percentage*neg_phase_classical + quantum_percentage*neg_phase_quantum))
# UNCOMMENT HERE TO DO BIAS UPDATES
#can update bias with weighted avg of quantum and classical.
# new_bias += learning_rate * (pos_expect_bias - (0.0*neg_associations_bias + 1.0 * neg_phase_quantum_bias))
self.WEIGHTS = copy.deepcopy(new_weights)
self.BIAS = copy.deepcopy(new_bias)
with open("RBM_info.txt", "w") as myfile:
myfile.write(json.dumps(list(self.WEIGHTS.tolist()))+'\n')
myfile.write(json.dumps(list(self.BIAS.tolist()))+'\n')
with open("RBM_history.txt", "a") as myfile:
myfile.write(json.dumps(list(self.WEIGHTS.tolist()))+'\n')
myfile.write(json.dumps(list(self.BIAS.tolist()))+'\n')
myfile.write(str('-'*80) + '\n')
print 'Training Done!'
def transform(self, DATA):
"""
Transforms vectors from visible to hidden
Params
-----------------
DATA: (list) matrix containing rows that are data samples
-----------------
Returns
----------------
result: (list) the hidden layers invoked from the samples in data matrix
----------------
"""
# MODIFY THIS IF INCLUDING BIAS
return self.sigmoid(np.dot(DATA, self.WEIGHTS))
""" Simple use case example """
# Setup a Rigetti qvm connection
qvm = api.SyncConnection()
#Creat an instance of a qRBM
r = qRBM(qvm, num_visible=4, num_hidden=1, n_quantum_measurements=None, verbose=False)
# simple artificially high dimensional data
simple_data = [[1,1,-1,-1], [1,1,-1,-1], [-1,-1,1,1], [-1,-1,1,1]]
#train for 100 epochs using only quantum calculated negative phase in update rule.
r.train(simple_data, n_epochs=100, quantum_percentage=1.0, classical_percentage=0.0)
# transorm down to 1 dimension to see how we did.
print r.transform(simple_data)