-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathopticalflow.lua
363 lines (330 loc) · 14.4 KB
/
opticalflow.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
require 'torch'
torch.setdefaulttensortype('torch.FloatTensor')
require 'xlua'
require 'nnx'
require 'image'
require 'optim'
require 'load_data'
require 'groundtruth_opticalflow'
require 'opticalflow_model'
require 'opticalflow_model_io'
require 'sys'
require 'openmp'
require 'score_opticalflow'
torch.manualSeed(1)
op = xlua.OptionParser('%prog [options]')
-- general
op:option{'-nt', '--num-threads', action='store', dest='nThreads', default=2,
help='Number of threads used'}
-- network
op:option{'-nf', '--n-features', action='store', dest='n_features',
default=10, help='Number of features used for the matching'}
op:option{'-k1s', '--kernel1-size', action='store', dest='kernel1_size',
default=5, help='Kernel 1 size'}
op:option{'-k2s', '--kernel2-size', action='store', dest='kernel2_size',
default=16, help='Kernel 2 size'}
op:option{'-k3s', '--kernel3-size', action='store', dest='kernel3_size',
default=16, help='Kernel 3 size'}
op:option{'-ws', '--window-size', action='store', dest='win_size',
default=16, help='Window size maxw (and maxh if no -wsh)'}
op:option{'-wsh', '--window-size-height', action='store', dest='win_size_height',
default=nil, help='Window size height (maxh)'}
op:option{'-nl', '-num-layers', action='store', dest='num_layers',
default=2, help='Number of layers in the network (1 2 or 3)'}
op:option{'-s2', '--layer-two-size', action='store', dest='layer_two_size', default=8,
help='Second layer size, if nl >= 2'}
op:option{'-s2c', '--layer-two-connections', action='store', dest='layer_two_connections',
default=4, help='Number of connectons between layers 1 and 2'}
op:option{'-s3', '--layer-three-size', action='store', dest='layer_three_size', default=8,
help='Third layer size, if nl >= 3'}
op:option{'-s3c', '--layer-three-connections', action='store', dest='layer_three_connections',
default=4, help='Number of connectons between layers 2 and 3'}
op:option{'-l2', '--l2-pooling', action='store_true', dest='l2_pooling', default=false,
help='L2 pooling (experimental)'}
op:option{'-ms', '--multiscale', action='store', dest='multiscale', default=0,
help='Number of scales used (0 disables multiscale)'}
op:option{'-sf', '--share-filters', action='store_true', dest='share_filters', default=false,
help='Share multiscale filters'}
op:option{'-lw', '--load-weights', action='store', dest='load_weights', default = nil,
help = 'Load weights from previously trained model'}
op:option{'-mstw', '--multiscale-trainable-weights', action='store_true',
dest='ms_trainable_weights', default = false,
help='Allow the weights of CascadingAddTable to be trained'}
op:option{'-mssb', '--multiscale-single-beta', action='store_true', default=false,
dest='ms_single_beta', help='Single beta per scale in CascadingAddTable'}
op:option{'-oem', '--output-extraction-method', action='store', default='max',
dest='output_extraction_method', help="Output extraction method (max | mean)"}
-- learning
op:option{'-n', '--n-train-set', action='store', dest='n_train_set', default=2000,
help='Number of patches in the training set'}
op:option{'-m', '--n-test-set', action='store', dest='n_test_set', default=1000,
help='Number of patches in the test set'}
op:option{'-mni', '--n-images-test-set', action='store', dest='n_images_test_set', default=2,
help='Number of full images to compute epoch score'}
op:option{'-e', '--num-epochs', action='store', dest='n_epochs', default=10,
help='Number of epochs'}
op:option{'-r', '--learning-rate', action='store', dest='learning_rate',
default=5e-3, help='Learning rate'}
op:option{'-lrd', '--learning-rate-decay', action='store', dest='learning_rate_decay',
default=5e-7, help='Learning rate decay'}
op:option{'-wd', '--weight-decay', action='store', dest='weight_decay',
default=0, help='Weight decay'}
op:option{'-rn', '--renew-train-set', action='store_true', dest='renew_train_set',
default=false, help='Renew train set at each epoch'}
op:option{'-st', '--soft-targets', action='store', dest='soft_targets',
default=nil, help='Targets are gaussians, specify sigma2'}
op:option{'-gtws', '--gt-window-size', action='store', dest='gt_win_size',
default=16, help='Groundtruth window size maxw (and maxh)'}
-- input
op:option{'-rd', '--root-directory', action='store', dest='root_directory',
default='data/', help='Root dataset directory'}
op:option{'-fi', '--first-image', action='store', dest='first_image', default=0,
help='Index of first image used'}
op:option{'-d', '--delta', action='store', dest='delta', default=1,
help='Delta between two consecutive frames'}
op:option{'-ni', '--num-input-images', action='store', dest='num_input_images',
default=10, help='Number of annotated images used'}
op:option{'-mc', '--motion-correction', action='store', dest='motion_correction',default=false,
help='Eliminate panning, tilting and rotation camera movements (mc | sfm)'}
op:option{'-gt', '--grountruth', action='store', dest='groundtruth',
default='cross-correlation', help='Groundtruth : cross-correlation | liu | cvlibs'}
op:option{'-nci', '--n-channels-in', action='store', dest='n_channels_in',
default=3, help='Number of channels of the input images'}
-- output
op:option{'-omd', '--output-model-dir', action='store', dest='output_models_dir',
default = 'models', help='Output model directory'}
opt=op:parse()
opt.nThreads = tonumber(opt.nThreads)
opt.multiscale = tonumber(opt.multiscale)
opt.n_train_set = tonumber(opt.n_train_set)
opt.n_test_set = tonumber(opt.n_test_set)
opt.n_images_test_set = tonumber(opt.n_images_test_set)
opt.n_epochs = tonumber(opt.n_epochs)
opt.learning_rate = tonumber(opt.learning_rate)
opt.learning_rate_decay = tonumber(opt.learning_rate_decay)
opt.weight_decay = tonumber(opt.weight_decay)
if opt.root_directory:sub(-1) ~= '/' then opt.root_directory = opt.root_directory .. '/' end
openmp.setDefaultNumThreads(opt.nThreads)
local correction = {}
correction.motion_correction = opt.motion_correction
correction.wImg = 640
correction.hImg = 480
correction.bad_image_threshold = 0.2
correction.K = torch.FloatTensor(3,3):zero()
correction.K[1][1] = 293.824707
correction.K[2][2] = 310.435730
correction.K[1][3] = 300.631012
correction.K[2][3] = 251.624924
correction.K[3][3] = 1.0
correction.distP = torch.FloatTensor(5)
correction.distP[1] = -0.379940
correction.distP[2] = 0.212737
correction.distP[3] = 0.003098
correction.distP[4] = 0.000870
correction.distP[5] = -0.069770
local geometry = {}
geometry.wImg = 320
geometry.hImg = 180
geometry.maxwHR = tonumber(opt.win_size) --high res in case of multiscale
geometry.maxhHR = tonumber(opt.win_size) --high res in case of multiscale
if opt.win_size_height then
geometry.maxhHR = tonumber(opt.win_size_height)
end
geometry.maxwGT = tonumber(opt.gt_win_size)
geometry.maxhGT = tonumber(opt.gt_win_size)
geometry.wKernelGT = 16
geometry.hKernelGT = 16
geometry.layers = {}
if tonumber(opt.num_layers) == 1 then
geometry.layers[1] = {tonumber(opt.n_channels_in), tonumber(opt.kernel1_size),
tonumber(opt.kernel1_size), tonumber(opt.n_features)}
geometry.wKernel = tonumber(opt.kernel1_size)
geometry.hKernel = tonumber(opt.kernel1_size)
elseif tonumber(opt.num_layers) == 2 then
geometry.layers[1] = {tonumber(opt.n_channels_in), tonumber(opt.kernel1_size),
tonumber(opt.kernel1_size), tonumber(opt.layer_two_size)}
geometry.layers[2] = {tonumber(opt.layer_two_connections), tonumber(opt.kernel2_size),
tonumber(opt.kernel2_size), tonumber(opt.n_features)}
geometry.wKernel = tonumber(opt.kernel1_size) + tonumber(opt.kernel2_size) - 1
geometry.hKernel = tonumber(opt.kernel1_size) + tonumber(opt.kernel2_size) - 1
elseif tonumber(opt.num_layers) == 3 then
geometry.layers[1] = {tonumber(opt.n_channels_in), tonumber(opt.kernel1_size),
tonumber(opt.kernel1_size), tonumber(opt.layer_two_size)}
geometry.layers[2] = {tonumber(opt.layer_two_connections), tonumber(opt.kernel2_size),
tonumber(opt.kernel2_size), tonumber(opt.layer_three_size)}
geometry.layers[3] = {tonumber(opt.layer_three_connections), tonumber(opt.kernel3_size),
tonumber(opt.kernel3_size), tonumber(opt.n_features)}
geometry.wKernel = tonumber(opt.kernel1_size) + tonumber(opt.kernel2_size) + tonumber(opt.kernel3_size) - 2
geometry.hKernel = tonumber(opt.kernel1_size) + tonumber(opt.kernel2_size) + tonumber(opt.kernel3_size) - 2
else
assert(false)
end
geometry.L2Pooling = opt.l2_pooling
if opt.multiscale == 0 then
geometry.multiscale = false
geometry.ratios = {1}
geometry.maxw = geometry.maxwHR
geometry.maxh = geometry.maxhHR
else
geometry.multiscale = true
geometry.ratios = {}
for i = 1,opt.multiscale do table.insert(geometry.ratios, math.pow(2, i-1)) end
geometry.maxw = math.ceil(geometry.maxwHR / geometry.ratios[#geometry.ratios])
geometry.maxh = math.ceil(geometry.maxhHR / geometry.ratios[#geometry.ratios])
end
geometry.wPatch2 = geometry.maxw + geometry.wKernel - 1
geometry.hPatch2 = geometry.maxh + geometry.hKernel - 1
geometry.motion_correction = opt.motion_correction
geometry.share_filters = opt.share_filters
geometry.training_mode = true
geometry.prefilter = false
if geometry.multiscale then
geometry.cascad_trainable_weights = opt.ms_trainable_weights
geometry.single_beta = opt.ms_single_beta
end
geometry.output_extraction_method = opt.output_extraction_method
local learning = {}
learning.first_image = tonumber(opt.first_image)
learning.delta = tonumber(opt.delta)
learning.num_images = tonumber(opt.num_input_images)
learning.rate = opt.learning_rate
learning.rate_decay = opt.learning_rate_decay
learning.weight_decay = opt.weight_decay
learning.renew_train_set = opt.renew_train_set
learning.soft_targets = opt.soft_targets ~= nil
learning.st_sigma2 = tonumber(opt.soft_targets)
learning.groundtruth = opt.groundtruth
if learning.groundtruth == 'liu' then
geometry.hKernelGT = geometry.hKernel
geometry.wKernelGT = geometry.wKernel
--geometry.maxhGT = geometry.maxh
--geometry.maxwGT = geometry.maxw
else
assert(geometry.maxwGT >= geometry.maxw)
assert(geometry.maxhGT >= geometry.maxh)
end
local summary = describeModel(geometry, learning)
--local model
if geometry.multiscale then
model = getModelMultiscale(geometry, false)
else
model = getModel(geometry, false)
end
if opt.load_weights then
loadWeightsFrom(model, opt.load_weights)
end
local parameters, gradParameters = model:getParameters()
local criterion
if geometry.output_extraction_method == 'mean' then
criterion = nn.MSECriterion()
else
if learning.soft_targets then
criterion = nn.DistNLLCriterion()
--criterion.targetIsProbability = true
else
criterion = nn.ClassNLLCriterion()
end
end
print('Loading images...')
print(opt.root_directory)
local raw_data = loadDataOpticalFlow(correction, geometry, learning, opt.root_directory)
print('Generating training set...')
local trainData = generateDataOpticalFlow(correction, geometry, learning,
raw_data, opt.n_train_set)
print('Generating test set...')
local testData = generateDataOpticalFlow(correction, geometry, learning,
raw_data, opt.n_test_set)
print("a")
local score = score_epoch(geometry, learning, model, criterion, testData,
raw_data, opt.n_images_test_set)
saveModel(opt.output_models_dir, 'model_of_', geometry, learning, model, 0, score)
print("b")
config = {learningRate = learning.rate,
weightDecay = learning.weight_decay,
momentum = 0,
learningRateDecay = learning.rate_decay}
for iEpoch = 1,opt.n_epochs do
print('Epoch ' .. iEpoch .. ' over ' .. opt.n_epochs)
print(summary)
local nGood = 0
local nBad = 0
local meanErr = 0
if learning.renew_train_set then
trainData = generateDataOpticalFlow(correction, geometry, learning,
raw_data, opt.n_train_set)
end
for t = 1,trainData:size() do
modProgress(t, trainData:size(), 100)
local input, itarget, target
if geometry.multiscale then
local sample = trainData:getElemFovea(t)
input = sample[1][1]
model:focus(sample[1][2][2], sample[1][2][1])
itarget, target = prepareTarget(geometry, learning, sample[2])
else
local sample = trainData[t]
input = prepareInput(geometry, sample[1][1], sample[1][2])
itarget, target = prepareTarget(geometry, learning, sample[2])
end
local feval = function(x)
if x ~= parameters then
parameters:copy(x)
end
gradParameters:zero()
local output = model:forward(input)
if geometry.output_extraction_method == 'mean' then
local output_crit = torch.Tensor(2)
output_crit[1] = output[1]:squeeze()
output_crit[2] = output[2]:squeeze()
local target_crit = torch.Tensor(2)
target_crit[1], target_crit[2] = x2yx(geometry, target)
local err = criterion:forward(output_crit, target_crit)
local df_do = criterion:backward(output_crit, target_crit)
local df_do2 = {torch.Tensor(1,1):fill(df_do[1]),
torch.Tensor(1,1):fill(df_do[2])}
model:backward(input, df_do2)
meanErr = meanErr + err
if (output_crit-target_crit):norm() < 1 then
nGood = nGood + 1
else
nBad = nBad + 1
end
else
local err = criterion:forward(output:squeeze(), target)
local df_do = criterion:backward(output:squeeze(), target)
model:backward(input, df_do)
meanErr = meanErr + err
local outputp = processOutput(geometry, output, false)
if outputp.index == itarget then
nGood = nGood + 1
else
nBad = nBad + 1
end
end
if sys.isNaN(gradParameters:sum()) then
error('stopped in main')
end
return err, gradParameters
end
optim.sgd(feval, parameters, config)
if model.cascad then --optim.sgd sucks. Why doesn't it use updateParameters ?????
model.cascad:updateNormalizers()
end
end
collectgarbage()
if geometry.cascad_trainable_weights then
local p, gp = model.cascad:parameters()
for i = 1,#p do
print(p[i][1])
end
print('--')
for i = 1,#model.cascad.muls_normalizers do
print(model.cascad.muls_normalizers[i][1].weight[1])
end
end
meanErr = meanErr / (trainData:size())
print('train: nGood = ' .. nGood .. ' nBad = ' .. nBad .. ' (' .. 100.0*nGood/(nGood+nBad) .. '%) meanErr = ' .. meanErr)
local score = score_epoch(geometry, learning, model, criterion, testData,
raw_data, opt.n_images_test_set)
saveModel(opt.output_models_dir, 'model_of_', geometry, learning, model, iEpoch, score)
end