-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathopticalflow_model.lua
472 lines (439 loc) · 14.8 KB
/
opticalflow_model.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
require 'torch'
require 'xlua'
require 'nnx'
require 'SmartReshape'
require 'common'
require 'CascadingAddTable'
require 'OutputExtractor'
require 'inline'
require 'extractoutput'
require 'opticalflow_model_multiscale'
function yx2x(geometry, y, x)
return (y-1) * geometry.maxw + x
end
function x2yx(geometry, x)
if type(x) == 'number' then
return (math.floor((x-1)/geometry.maxw)+1), (math.mod(x-1, geometry.maxw)+1)
else
local xdbl = torch.DoubleTensor(x:size()):copy(x)-1
local yout = (xdbl/geometry.maxw):floor()
local xout = xdbl - yout*geometry.maxw
return (yout+1.5):floor(), (xout+1.5):floor() --(a+0.5):floor() is a:round()
end
end
-- these 2 functions are kinda deprecated and confusing (because maxhGT != maxh)
-- todo: try not to use them, eventually remove them
function centered2onebased(geometry, y, x)
return (y+math.ceil(geometry.maxh/2)), (x+math.ceil(geometry.maxw/2))
end
function onebased2centered(geometry, y, x)
return (y-math.ceil(geometry.maxh/2)), (x-math.ceil(geometry.maxw/2))
end
function getMiddleIndex(geometry)
if geometry.multiscale then
return yx2xMulti(geometry, 0, 0)
else
local y, x = centered2onebased(geometry, 0, 0)
return yx2x(geometry, y, x)
end
end
function getFilter(geometry)
assert(not geometry.L2Pooling)
local filter = nn.Sequential()
for i = 1,#geometry.layers do
if i == 1 then
filter:add(nn.SpatialConvolution(geometry.layers[i][1], geometry.layers[i][4],
geometry.layers[i][2], geometry.layers[i][3]))
elseif geometry.layers[i-1][4] == geometry.layers[i][1] then
filter:add(nn.SpatialConvolution(geometry.layers[i][1], geometry.layers[i][4],
geometry.layers[i][2], geometry.layers[i][3]))
else
filter:add(nn.SpatialConvolutionMap(nn.tables.random(geometry.layers[i-1][4],
geometry.layers[i][4],
geometry.layers[i][1]),
geometry.layers[i][2], geometry.layers[i][3]))
end
if i ~= #geometry.layers then
filter:add(nn.Tanh())
end
end
function filter:getWeights()
local weights = {}
local iLayer = 1
for i = 1,#self.modules do
if self.modules[i].weight then
weights['layer'..iLayer] = self.modules[i].weight
iLayer = iLayer + 1
end
end
return weights
end
return filter
end
function getModel(geometry, full_image, prefiltered)
if prefiltered == nil then prefiltered = false end
local model = nn.Sequential()
if not prefiltered then
local filter = getFilter(geometry)
local parallel = nn.ParallelTable()
parallel:add(filter)
parallel:add(filter:clone('weight', 'bias', 'gradWeight', 'gradBias'))
model:add(parallel)
end
model:add(nn.SpatialMatching(geometry.maxh, geometry.maxw, false))
model:add(nn.Minus())
model:add(nn.FunctionWrapper(function(self)
self.seq = nn.Sequential()
self.seq:add(nn.SmartReshape({-1, -2}, {-3, -4}))
self.seq:add(nn.SoftMax())
self.seq:add(nn.SmartReshape(1, 1, -2))
end,
function(self, input)
self.seq.modules[3].sizes[1] = input:size(1)
self.seq.modules[3].sizes[2] = input:size(2)
return self.seq:updateOutput(input)
end,
function(self, input, gradOutput)
return self.seq:updateGradInput(input, gradOutput)
end))
if geometry.output_extraction_method == 'mean' then
model:add(nn.OutputExtractor(geometry.maxh, geometry.maxw))
else
assert(geometry.output_extraction_method == 'max')
if geometry.training_mode then
model:add(nn.Log())
end
end
function model:getWeights()
if prefiltered then
return {}
else
return self.modules[1].modules[1]:getWeights()
end
end
return model
end
function prepareInput(geometry, patch1, patch2)
assert(sameSize(patch1, patch2))
if geometry.prefilter then
assert(patch1:size(1) == geometry.layers[#geometry.layers][4])
else
if (geometry.layers[1][1] == 1) and (patch1:size(1) == 3) then
patch1 = image.rgb2y(patch1, patch2)
end
assert(patch1:size(1) == geometry.layers[1][1])
end
if geometry.multiscale then
return {patch1, patch2}
else
ret = {}
--TODO this should be floor, according to the way the gt is computed. why?
ret[1] = patch1:narrow(2, math.ceil(geometry.maxh/2), patch1:size(2)-geometry.maxh+1)
:narrow(3, math.ceil(geometry.maxw/2), patch1:size(3)-geometry.maxw+1)
ret[2] = patch2
return ret
end
end
function getOutputConfidences(geometry, input, threshold)
if not threshold then
local m, idx = input:max(3)
m = m:select(3,1)
idx = idx:select(3,1)
local middleIndex = getMiddleIndex(geometry)
local flatPixels = torch.LongTensor(m:size(1), m:size(2)):copy(m:eq(input[{{},{},middleIndex}]))
idx = flatPixels*middleIndex + (-flatPixels+1):cmul(idx:reshape(idx:size(1),idx:size(2)))
return idx, torch.Tensor(idx:size()):fill(1)
else
local imaxs = torch.LongTensor(input:size(1), input:size(2))
local scores= torch.Tensor (input:size(1), input:size(2))
extractoutput.extractOutput(input, scores, 0.11, imaxs)
local gds = scores:gt(threshold)
return imaxs, gds
end
end
function getOutputConfidences2(geometry, input)
local xmul = torch.Tensor(geometry.maxh*geometry.maxw)
local ymul = torch.Tensor(geometry.maxh*geometry.maxw)
for i = 1,geometry.maxh do
for j = 1,geometry.maxw do
local k = yx2x(geometry, i, j)
ymul[k] = i
xmul[k] = j
end
end
xmul = nn.Replicate(input:size(1)):forward(nn.Replicate(input:size(2)):forward(xmul))
ymul = nn.Replicate(input:size(1)):forward(nn.Replicate(input:size(2)):forward(ymul))
local x = input:clone():cmul(xmul):sum(3)[{{},{},1}]
local y = input:clone():cmul(ymul):sum(3)[{{},{},1}]
local imaxs = torch.LongTensor(input:size(1), input:size(2))
--local gds = torch.LongTensor(input:size(1), input:size(2))
--extractoutput.extractOutput(input, 0.11, 0, imaxs, gds)
local xgds = torch.LongTensor(input:size(1), input:size(2))
--local ygds = torch.LongTensor(input:size(1), input:size(2))
local inputmarg = input:reshape(input:size(1), input:size(2), geometry.maxh, geometry.maxw):sum(4):squeeze()
local scores= torch.Tensor (input:size(1), input:size(2))
extractoutput.extractOutput(inputmarg, scores, 0.11, imaxs)
local xgds = scores:gt(0)
--extractoutput.extractOutput(input:sum(3), 0.11, 0, imaxs, ygds)
gds = xgds
return y, x, gds
end
function processOutput(geometry, output, process_full, threshold)
local ret = {}
if geometry.output_extraction_method == 'max' then
ret.index, ret.confidences = getOutputConfidences(geometry, output, threshold)
ret.index = ret.index:squeeze()
if geometry.multiscale then
ret.y, ret.x = x2yxMulti(geometry, ret.index)
else
ret.y, ret.x = x2yx(geometry, ret.index)
local yoffset, xoffset = centered2onebased(geometry, 0, 0)
ret.y = ret.y - yoffset
ret.x = ret.x - xoffset
end
if process_full == nil then
process_full = type(ret.y) ~= 'number'
end
else
assert(not geometry.multiscale)
ret.y, ret.x, ret.confidences = getOutputConfidences2(geometry, output)
ret.index = yx2x(geometry, (ret.y+0.5):floor(), (ret.x+0.5):floor())
ret.index = ret.index:squeeze()
local yoffset, xoffset = centered2onebased(geometry, 0, 0)
ret.y = ret.y - yoffset
ret.x = ret.x - xoffset
end
if process_full then
local hoffset, woffset
hoffset = math.floor((geometry.hImg-ret.y:size(1))/2)
woffset = math.floor((geometry.wImg-ret.y:size(2))/2)
if type(ret.y) == 'number' then
ret.full = torch.Tensor(2, geometry.hPatch2, geometry.wPatch2):zero()
ret.full[1][1+hoffset][1+hoffset] = ret.y
ret.full[2][1+hoffset][1+woffset] = ret.x
else
ret.full = torch.Tensor(2, geometry.hImg, geometry.wImg):zero()
ret.full:sub(1, 1,
1 + hoffset, ret.y:size(1) + hoffset,
1 + woffset, ret.y:size(2) + woffset):copy(ret.y)
ret.full:sub(2, 2,
1 + hoffset, ret.x:size(1) + hoffset,
1 + woffset, ret.x:size(2) + woffset):copy(ret.x)
if ret.confidences then
ret.full_confidences = torch.Tensor(geometry.hImg, geometry.wImg):zero()
ret.full_confidences:sub(1 + hoffset, ret.y:size(1) + hoffset,
1 + woffset, ret.y:size(2) + woffset):copy(
ret.confidences)
end
end
end
return ret
end
function processOutput2(geometry, output)
local ret = {}
if not CST_Tx then --todo : cleaner
CST_Tx = torch.Tensor(geometry.maxh, geometry.maxw)
CST_Ty = torch.Tensor(geometry.maxh, geometry.maxw)
for i = 1,geometry.maxh do
for j = 1,geometry.maxw do
CST_Ty[i][j] = i-math.ceil(geometry.maxh/2)
CST_Tx[i][j] = j-math.ceil(geometry.maxw/2)
end
end
end
local normer = 1.0 / (geometry.maxh*geometry.maxw)
--local outputr = output:resize(geometry.maxh, geometry.maxw, output:size(2), output:size(3))
local outputr = output:resize(geometry.maxh, geometry.maxw):exp()
--print(outputr)
image.display{image=outputr,zoom=4}
ret.y = math.floor(outputr:dot(CST_Ty)*normer+0.5)
ret.x = math.floor(outputr:dot(CST_Tx)*normer+0.5)
ret.index = yx2x(geometry, ret.y, ret.x)
return ret
end
function prepareTarget(geometry, learning, targett)
local itarget, target, xtarget, ytarget
local halfh1 = math.ceil(geometry.maxh/2)-1
local halfh2 = math.floor(geometry.maxh/2)
local halfw1 = math.ceil(geometry.maxw/2)-1
local halfw2 = math.floor(geometry.maxw/2)
if (targett[1] < -halfh1) or (targett[1] > halfh2) or
(targett[2] < -halfw1) or (targett[2] > halfw2) then
xtarget = 0
ytarget = 0
else
xtarget = targett[2]
ytarget = targett[1]
end
if geometry.multiscale then
itarget = yx2xMulti(geometry, ytarget, xtarget)
else
local xtargetO = xtarget + halfw1 + 1
local ytargetO = ytarget + halfh1 + 1
itarget = (ytargetO-1) * geometry.maxw + xtargetO
end
if learning.soft_targets then
target = torch.Tensor(geometry.maxh*geometry.maxw)
local invsigma2 = 1./learning.st_sigma2
for y = -halfh1, halfh2 do
for x = -halfw1, halfw2 do
local d2 = (ytarget-y)*(ytarget-y) + (xtarget-x)*(xtarget-x)
local g = math.exp(-d2*invsigma2)
local i
if geometry.multiscale then
i = yx2xMulti(geometry, y, x)
else
local xO = x + halfw1 + 1
local yO = y + halfh1 + 1
i = (yO-1) * geometry.maxw + xO
end
target[i] = g
end
end
else
target = itarget
end
return itarget, target
end
function postProcessImage(input, mask, winsize, method)
local output = torch.Tensor(2, input[1]:size(1), input[1]:size(2)):zero()
--local winsizeh1 = math.ceil(winsize/2)-1
--local winsizeh2 = math.floor(winsize/2)
--local win = torch.Tensor(2,winsize,winsize)
inline.preamble [[
int comp(const void* a_,const void* b_) {
float a = *((float*)a_), b = *((float*)b_);
if (a==b) {
return 0;
} else {
if (a < b) {
return -1;
} else {
return 1;
}
}
}
]]
local fmax = inline.load [[
const void* idfloat = luaT_checktypename2id(L, "torch.FloatTensor");
THFloatTensor* flow = (THFloatTensor*)luaT_checkudata(L, 1, idfloat);
THFloatTensor* mask = (THFloatTensor*)luaT_checkudata(L, 2, idfloat);
int k = lua_tointeger(L, 3);
THFloatTensor* ret = (THFloatTensor*)luaT_checkudata(L, 4, idfloat);
int h = flow->size[1];
int w = flow->size[2];
long* fs = flow->stride;
float* flow_p = THFloatTensor_data(flow);
long* ms = mask->stride;
float* mask_p = THFloatTensor_data(mask);
long* rs = ret->stride;
float* ret_p = THFloatTensor_data(ret);
int halfk = k/2;
const int TMPSIZE = 256;
const int ROWSIZE = 16;
int tmp[TMPSIZE];
int i, j, ik, jk, l;
for (i = 0; i < h-k; ++i) {
for (j = 0; j < w-k; ++j) {
memset(tmp, 0, TMPSIZE*sizeof(int));
for (ik = i; ik < i+k; ++ik) {
for (jk = j; jk < j+k; ++jk) {
if (mask_p[ik*ms[0] + jk*ms[1] ]) {
int vx = flow_p[fs[0] + ik*fs[1] + jk*fs[2] ];
int vy = flow_p[ik*fs[1] + jk*fs[2] ];
int v = vx+ROWSIZE*vy;
++tmp[v];
}
}
}
int im = 0;
for (l = 0; l < TMPSIZE; ++l) {
if (tmp[l] > tmp[im])
im = l;
}
ret_p[rs[0] + (i+halfk)*rs[1] + (j+halfk)*rs[2] ] = im%%ROWSIZE;
ret_p[ (i+halfk)*rs[1] + (j+halfk)*rs[2] ] = im/ROWSIZE;
}
}
]]
local fmed = inline.load [[
const void* idfloat = luaT_checktypename2id(L, "torch.FloatTensor");
THFloatTensor* flow = (THFloatTensor*)luaT_checkudata(L, 1, idfloat);
THFloatTensor* mask = (THFloatTensor*)luaT_checkudata(L, 2, idfloat);
int k = lua_tointeger(L, 3);
THFloatTensor* ret = (THFloatTensor*)luaT_checkudata(L, 4, idfloat);
int h = flow->size[1];
int w = flow->size[2];
long* fs = flow->stride;
float* flow_p = THFloatTensor_data(flow);
long* ms = mask->stride;
float* mask_p = THFloatTensor_data(mask);
long* rs = ret->stride;
float* ret_p = THFloatTensor_data(ret);
int halfk = k/2;
const int TMPSIZE = 32;
const int ROWSIZE = 16;
float tmp[TMPSIZE];
float tmp2[TMPSIZE];
int i, j, ik, jk, l;
for (i = 0; i < h-k; ++i) {
for (j = 0; j < w-k; ++j) {
memset(tmp, 0, TMPSIZE*sizeof(int));
memset(tmp2, 0, TMPSIZE*sizeof(int));
int n = 0;
for (ik = i; ik < i+k; ++ik) {
for (jk = j; jk < j+k; ++jk) {
if (mask_p[ik*ms[0] + jk*ms[1] ]) {
float vx = flow_p[fs[0] + ik*fs[1] + jk*fs[2] ];
float vy = flow_p[ik*fs[1] + jk*fs[2] ];
tmp[n] = vy;
tmp2[n++] = vx;
}
}
}
qsort(tmp, n, sizeof(float), comp);
qsort(tmp2, n, sizeof(float), comp);
float im = tmp[n/2];
float im2 = tmp2[n/2];
ret_p[rs[0] + (i+halfk)*rs[1] + (j+halfk)*rs[2] ] = im2;
ret_p[ (i+halfk)*rs[1] + (j+halfk)*rs[2] ] = im;
}
}
]]
inline.default_preamble()
if method == 'max' then
local inputR = (input+0.5):floor()
m = inputR:min()
fmax(inputR-m, mask, winsize, output)
output = output+m
else
fmed(input, mask, winsize, output)
output = output
end
--[[
for i = 1+winsizeh1,output:size(2)-winsizeh2 do
for j = 1+winsizeh1,output:size(3)-winsizeh2 do
win[1] = (input[1]:sub(i-winsizeh1,i+winsizeh2, j-winsizeh1, j+winsizeh2)+0.5):floor()
win[2] = (input[2]:sub(i-winsizeh1,i+winsizeh2, j-winsizeh1, j+winsizeh2)+0.5):floor()
local win2 = win:reshape(2, winsize*winsize)
win2 = win2:sort(2)
local t = 1
local tbest = 1
local nbest = 1
for k = 2,9 do
if (win2:select(2,k) - win2:select(2,t)):abs():sum(1)[1] < 0.5 then
if k-t > nbest then
nbest = k-t
tbest = t
end
else
t = k
end
end
output[1][i][j] = win2[1][tbest]
output[2][i][j] = win2[2][tbest]
end
end
--]]
return output
end