-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dijkstra.java
272 lines (252 loc) · 5.14 KB
/
Dijkstra.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import java.util.Arrays;
public class Dijkstra {
private Vertex[] ssspList;
private int[][] graph;
public static final int INFINITY = 2147483647;
//single source shortests path algorithm
public Dijkstra(int sz)
{
ssspList = new Vertex[sz];
graph = new int[sz][sz];
}
public String toString(int source)
{
int count = 0;
String solution = "The shortest path distance from the source " + source + " to each vertice costs: ";
for(Vertex v: ssspList)
{
if(source != count)
{
solution = solution + v.distance + " to index: " + v.indexInGraph + ", ";
}
count++;
}
return solution;
}
//sssp algorithm
public String Dijkstras(int source) {
HeapStructure minHeap = new HeapStructure();
initializeGraph(ssspList, source, minHeap);
int j = ssspList.length-1;
while(j != 0)
{
Vertex min = minHeap.findMin();
if(min.distance != INFINITY)
{
loopGraph(min.indexInGraph);
min.known = true;
}
minHeap.delete();
j--;
}
//solution(source,ssspList);
return toString(source);
}
public void loopGraph(int source)
{
for(int i = 0; i < graph.length;i++)
{
if(graph[source][i] != INFINITY)
{
relax(source, i);
}
}
}
public void relax(int u, int v)
{
if(ssspList[u].distance + graph[u][v] < ssspList[v].distance)
{
ssspList[v].distance = ssspList[u].distance + graph[u][v];
//update parent
ssspList[v].parent = ssspList[u];
}
}
public void edge(int indexRow, int indexColumn, int destination)
{
if(graph[indexRow][indexColumn] == 0){
Vertex aVertice = new Vertex();
aVertice.indexInGraph = indexRow;
ssspList[indexRow] = aVertice;
}
if (destination != 0) {
graph[indexRow][indexColumn] = destination;
}
else
{
graph[indexRow][indexColumn] = INFINITY;
}
}
public void initializeGraph(Vertex[] g, int source, HeapStructure minHeap)
{
int count = 0;
for(Vertex v: g)
{
//initialize
v.indexInGraph = count;
v.parent = null;
v.known = false;
if(count == source)
{
v.distance = 0;
}
else
{
v.distance = INFINITY;
}
minHeap.insert(v);
count++;
}
}
public class Vertex {
private int indexInGraph;
private int distance;
private Vertex parent;
private boolean known;
}
public class HeapStructure {
private Vertex[] heap;
private int INDEX = 1;
public HeapStructure()
{
heap = new Vertex[6];
}
//insets to the tree
public void insert(Vertex v)
{
heap[0] = null;
if(heap[1]!= null)
{
INDEX++;
}
heap[INDEX] = v;
if(INDEX != 1)
{
bubbleUp(INDEX);
}
}
public int parent(int current)
{
return current/2;
}
public void bubbleUp(int currentIndex)
{
if(parent(currentIndex) >= 1)
{
int parentIndexOfCurrent = parent(currentIndex);
if(heap[parentIndexOfCurrent].distance > heap[currentIndex].distance)
{
Vertex parentDataHolder = heap[parentIndexOfCurrent];
heap[parentIndexOfCurrent] = heap[currentIndex];
heap[currentIndex] = parentDataHolder;
}
bubbleUp(parentIndexOfCurrent);
}
}
//returns the root
public Vertex findMin()
{
return heap[1];
}
//left child
public int left(int parent)
{
int c = parent * 2;
if (c+1 > heap.length)
{
c = heap.length + 1;
}
return c;
}
//right child
public int right(int parent)
{
int c = (parent * 2) + 1;
if (c+1 > heap.length || heap[c]== null)
{
c = heap.length + 1;
}
return c;
}
//builds the heap
public void BuildMinHeap()
{
for(int i = INDEX/2; i > 0;i--)
{
minHeapify(i);
}
}
//delets from heap
public Vertex delete()
{
Vertex delete = findMin();
for (int i = heap.length - 1; i > 0; i--)
{
if (heap[i] != null)
{
heap[1] = heap[i];
heap[i] = null;
break;
}
}
minHeapify(1);
return delete;
}
public int findLength()
{
int count = 0;
for (Vertex i : heap) {
if (i != null) {
count++;
}
}
return count;
}
//fixes order of heap
public void minHeapify(int index)
{
int min;
int left = left(index);
int right = right(index);
//will check if it will swap to left child or right child
//min has the child it will swap to
if (left <= findLength() && heap[index].distance > heap[left].distance)
{
min = left;
} else
{
min = index;
}
//will only check the right child if there's a right child
if (right <= findLength() && heap[index].distance > heap[right].distance)
{
if (heap[right].distance < heap[left].distance)
{
min = right;
}
}
//makes the swap
//will not swap if there's only one vertex in the heap
if (min != index)
{
//current root
Vertex c = heap[index];
heap[index] = heap[min];
if (min == left)
{
heap[left] = c;
}
else if (min == right)
{
heap[right] = c;
}
//Will check if you still have to keep going down the heap to swap
int check = min * 2;
int checkTwo = (min * 2) + 1;
if (check <= findLength() || checkTwo <= findLength()) //checks the length first
{
minHeapify(min);
}
}
}
}
}