forked from christophmschaefer/miluphcuda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kernel.cu
516 lines (465 loc) · 14.2 KB
/
kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/**
* @author Christoph Schaefer cm.schaefer@gmail.com
*
* @section LICENSE
* Copyright (c) 2019 Christoph Schaefer
*
* This file is part of miluphcuda.
*
* miluphcuda is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* miluphcuda is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with miluphcuda. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "kernel.h"
#include "timeintegration.h"
#include "tree.h"
#include "parameter.h"
#include "miluph.h"
#include "linalg.h"
#include "pressure.h"
// for interaction partners less than this value, the tensorial correction matrix
// will be set to the identity matrix (-> disabling the correction factors)
#define MIN_NUMBER_OF_INTERACTIONS_FOR_TENSORIAL_CORRECTION_TO_WORK 8
// pointers for the kernel function
__device__ SPH_kernel kernel;
__device__ SPH_kernel wendlandc2_p = wendlandc2;
__device__ SPH_kernel wendlandc4_p = wendlandc4;
__device__ SPH_kernel wendlandc6_p = wendlandc6;
__device__ SPH_kernel cubic_spline_p = cubic_spline;
__device__ SPH_kernel quartic_spline_p = quartic_spline;
__device__ SPH_kernel spiky_p = spiky;
// spiky kernel taken from Desbrun & Cani 1996
__device__ void spiky(double *W, double dWdx[DIM], double *dWdr, double dx[DIM], double sml)
{
int d;
double r;
double q;
r = 0;
for (d = 0; d < DIM; d++) {
r += dx[d]*dx[d];
dWdx[d] = 0;
}
r = sqrt(r);
*dWdr = 0;
*W = 0;
q = r/sml;
#if DIM == 1
printf("Error, this kernel can only be used with DIM == 2,3\n");
assert(0);
#endif
#if DIM == 2
if (q > 1) {
*W = 0;
} else if (q >= 0.0) {
*W = 10./(M_PI*sml*sml)*(1-q)*(1-q)*(1-q);
*dWdr = -30./(M_PI*sml*sml*sml)*(1-q)*(1-q);
}
#elif DIM == 3
if (q > 1) {
*W = 0;
} else if (q >= 0.0) {
*W = 15./(M_PI*sml*sml*sml)*(1-q)*(1-q)*(1-q);
*dWdr = -45/(M_PI*sml*sml*sml*sml)*(1-q)*(1-q);
}
#endif
for (d = 0; d < DIM; d++) {
dWdx[d] = *dWdr/r * dx[d];
}
}
// *THE* cubic bspline
__device__ void cubic_spline(double *W, double dWdx[DIM], double *dWdr, double dx[DIM], double sml)
{
int d;
double r;
double q;
double f;
r = 0;
for (d = 0; d < DIM; d++) {
r += dx[d]*dx[d];
dWdx[d] = 0;
}
r = sqrt(r);
*dWdr = 0;
*W = 0;
q = r/sml;
f = 4./3. * 1./sml;
#if DIM > 1
f = 40./(7*M_PI) * 1./(sml*sml);
#if DIM > 2
f = 8./M_PI * 1./(sml*sml*sml);
#endif
#endif
if (q > 1) {
*W = 0;
*dWdr = 0.0;
printf("This should never happen, actually.\n");
} else if (q > 0.5) {
*W = 2.*f * (1.-q)*(1.-q)*(1-q);
*dWdr = -6.*f*1./sml * (1.-q)*(1.-q);
} else if (q <= 0.5) {
*W = f * (6.*q*q*q - 6.*q*q + 1.);
*dWdr = 6.*f/sml * (3*q*q - 2*q);
}
for (d = 0; d < DIM; d++) {
dWdx[d] = *dWdr/r * dx[d];
}
}
// quartic spline from Dehnen & Aly 2012
__device__ void quartic_spline(double *W, double dWdx[DIM], double *dWdr, double dx[DIM], double sml)
{
int d;
double r;
double f;
double q;
r = 0;
for (d = 0; d < DIM; d++) {
r += dx[d]*dx[d];
dWdx[d] = 0;
}
r = sqrt(r);
*dWdr = 0;
*W = 0;
q = r/sml;
f = 3125./768. * 1/sml;
#if DIM > 1
f = 46875./(2398.*M_PI) * 1./(sml*sml);
#if DIM > 2
f = 15625./(512.*M_PI) * 1./(sml*sml*sml);
#endif
#endif
if (r > sml) {
*W = 0;
} else {
*W = f*( (1-q)*(1-q)*(1-q)*(1-q) - 5*(3./5.-q)*(3./5.-q)*(3./5.-q)*(3./5.-q)
+ 10.0*(1./5.-q)*(1./5.-q)*(1./5.-q)*(1./5.-q) ) * (q < 1);
*dWdr = f/sml*( -40.*(1./5.-q)*(1./5.-q)*(1./5.-q)+20*(3./5.-q)*(3./5.-q)*(3./5.-q)
- 4*(1-q)*(1-q)*(1-q) ) * (q < 1);
for (d = 0; d < DIM; d++) {
dWdx[d] = *dWdr/r * dx[d];
}
}
}
// Wendland C2 from Dehnen & Aly 2012
__device__ void wendlandc2(double *W, double dWdx[DIM], double *dWdr, double dx[DIM], double sml)
{
int d;
double r;
double q;
r = 0;
for (d = 0; d < DIM; d++) {
r += dx[d]*dx[d];
dWdx[d] = 0;
}
r = sqrt(r);
*dWdr = 0;
*W = 0;
if (r > sml) {
*W = 0;
} else {
q = r/sml;
#if (DIM == 2)
*W = 7./(M_PI*sml*sml) * (1-q)*(1-q)*(1-q)*(1-q) *(1+4*q) * (q < 1);
*dWdr = -140./(M_PI*sml*sml*sml) * q * (1-q)*(1-q)*(1-q) * (q < 1);
#elif (DIM == 3)
*W = 21./(2*M_PI*sml*sml*sml) * (1-q)*(1-q)*(1-q)*(1-q) *(1+4*q) * (q < 1);
*dWdr = -210./(M_PI*sml*sml*sml*sml) * q * (1-q)*(1-q)*(1-q) * (q < 1);
#elif (DIM == 1)
*W = 5./(4.*sml) * (1-q)*(1-q)*(1-q)*(1+3*q) * (q < 1);
*dWdr = -15/(sml*sml) * q * (1-q)*(1-q) * (q < 1);
#endif
for (d = 0; d < DIM; d++) {
dWdx[d] = *dWdr/r * dx[d];
}
}
}
// Wendland C4 from Dehnen & Aly 2012
__device__ void wendlandc4(double *W, double dWdx[DIM], double *dWdr, double dx[DIM], double sml)
{
int d;
double r;
double q;
r = 0;
for (d = 0; d < DIM; d++) {
r += dx[d]*dx[d];
dWdx[d] = 0;
}
r = sqrt(r);
*dWdr = 0;
*W = 0;
if (r > sml) {
*W = 0;
} else {
q = r/sml;
#if (DIM == 2)
*W = 9./(M_PI*sml*sml) * (1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q) * (1.+6*q+35./3.*q*q) * (q < 1);
*dWdr = -54./(M_PI*sml*sml*sml) * (1-q)*(1-q)*(1-q)*(1-q)*(1-q) * (1.-35.*q*q+105.*q*q*q) * (q< 1);
#elif (DIM == 3)
*W = 495./(32.*M_PI*sml*sml*sml) * (1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q) * (1.+6.*q+35./3.*q*q) * (q < 1);
*dWdr = -1485./(16.*M_PI*sml*sml*sml*sml) * (1-q)*(1-q)*(1-q)*(1-q)*(1-q) * (1.-35.*q*q+105.*q*q*q) * (q< 1);
#elif (DIM == 1)
*W = 3./(2.*sml) * (1-q)*(1-q)*(1-q)*(1-q)*(1-q) * (1+5*q+8*q*q) * (q < 1);
*dWdr = -21./(sml*sml) * q * (1-q)*(1-q)*(1-q)*(1-q) * (1+4*q) * (q < 1);
#endif
for (d = 0; d < DIM; d++) {
dWdx[d] = *dWdr/r * dx[d];
}
}
}
// Wendland C6 from Dehnen & Aly 2012
__device__ void wendlandc6(double *W, double dWdx[DIM], double *dWdr, double dx[DIM], double sml)
{
int d;
double r;
double q;
r = 0;
for (d = 0; d < DIM; d++) {
r += dx[d]*dx[d];
dWdx[d] = 0;
}
r = sqrt(r);
*dWdr = 0;
*W = 0;
if (r > sml) {
*W = 0;
} else {
q = r/sml;
#if (DIM == 2)
*W = 78./(7.*M_PI*sml*sml) * (1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q) * (1.+8.*q+25.*q*q+32*q*q*q) * (q < 1);
*dWdr = -1716./(7.*M_PI*sml*sml*sml) * q * (1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q) * (1.+7*q+16*q*q) * (q < 1);
#elif (DIM == 3)
*W = 1365./(64.*M_PI*sml*sml*sml) * (1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q) * (1.+8.*q+25.*q*q+32*q*q*q) * (q < 1);
*dWdr = -15015./(32.*M_PI*sml*sml*sml*sml) * q * (1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q) *
(1.+7*q+16*q*q) * (q < 1);
#elif (DIM == 1)
*W = 55./(32.*sml) * (1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q) * (1+7*q+19*q*q+21*q*q*q) * (q < 1);
*dWdr = -165./(16*sml*sml) * q * (1-q)*(1-q)*(1-q)*(1-q)*(1-q)*(1-q) * (3+18*q+35*q*q) * (q < 1);
#endif
for (d = 0; d < DIM; d++) {
dWdx[d] = *dWdr/r * dx[d];
}
}
}
#if ARTIFICIAL_STRESS
// prepares particles for the tensile instability fix
// see monaghan jcp 159 (2000)
__device__ double fixTensileInstability(int a, int b)
{
int d;
double hbar;
double dx[DIM];
double W;
double W2;
double dWdr;
double dWdx[DIM];
W = 0;
W2 = 0;
dWdr = 0;
for (d = 0; d < DIM; d++) {
dx[d] = 0.0;
dWdx[d] = 0;
}
dx[0] = p.x[a] - p.x[b];
#if DIM > 1
dx[1] = p.y[a] - p.y[b];
#if DIM > 2
dx[2] = p.z[a] - p.z[b];
#endif
#endif
hbar = 0.5 * (p.h[a] + p.h[b]);
// calculate kernel for r and particle_distance
//kernel(distance, hbar);
kernel(&W, dWdx, &dWdr, dx, hbar);
dx[0] = matmean_particle_distance[p_rhs.materialId[a]];
for (d = 1; d < DIM; d++) {
dx[d] = 0;
}
kernel(&W2, dWdx, &dWdr, dx, hbar);
//printf("++++++++++++++ %.17lf\n", W/W2);
return W/W2;
}
#endif // ARTIFICIAL_STRESS
#if (NAVIER_STOKES || BALSARA_SWITCH || INVISCID_SPH || INTEGRATE_ENERGY)
__global__ void CalcDivvandCurlv(int *interactions)
{
int i, inc, j, k, m, d;
inc = blockDim.x * gridDim.x;
/* absolute values of div v and curl v */
double divv;
double curlv[DIM];
double W, dWdr;
double dWdx[DIM], dx[DIM];
double sml;
double vi[DIM], vj[DIM];
double r;
for (i = threadIdx.x + blockIdx.x * blockDim.x; i < numParticles; i += inc) {
if (EOS_TYPE_IGNORE == matEOS[p_rhs.materialId[i]] || p_rhs.materialId[i] == EOS_TYPE_IGNORE) {
continue;
}
k = p.noi[i];
divv = 0;
for (m = 0; m < DIM; m++) {
curlv[m] = 0;
dWdx[m] = 0;
}
sml = p.h[i];
/* interaction partner loop */
for (m = 0; m < k; m++) {
j = interactions[i*MAX_NUM_INTERACTIONS+m];
/* get the kernel values */
#if VARIABLE_SML
sml = 0.5 *(p.h[i] + p.h[j]);
#endif
dx[0] = p.x[i] - p.x[j];
#if DIM > 1
dx[1] = p.y[i] - p.y[j];
#if DIM > 2
dx[2] = p.z[i] - p.z[j];
#endif
#endif
kernel(&W, dWdx, &dWdr, dx, sml);
vi[0] = p.vx[i];
vj[0] = p.vx[j];
#if DIM > 1
vi[1] = p.vy[i];
vj[1] = p.vy[j];
#if DIM > 2
vi[2] = p.vz[i];
vj[2] = p.vz[j];
#endif
#endif
r = 0;
for (d = 0; d < DIM; d++) {
r += dx[d]*dx[d];
}
r = sqrt(r);
/* divv */
for (d = 0; d < DIM; d++) {
divv += p.m[j]/p.rho[i] * (vj[d] - vi[d]) * dWdx[d];
}
/* curlv */
#if (DIM == 1 && BALSARA_SWITCH)
#error unset BALSARA SWITCH in 1D
#elif DIM == 2
// only one component in 2D
curlv[0] += p.m[j]/p.rho[i] * ((vi[0] - vj[0]) * dWdx[1]
- (vi[1] - vj[1]) * dWdx[0]);
curlv[1] = 0;
#elif DIM == 3
curlv[0] += p.m[j]/p.rho[i] * ((vi[1] - vj[1]) * dWdx[2]
- (vi[2] - vj[2]) * dWdx[1]);
curlv[1] += p.m[j]/p.rho[i] * ((vi[2] - vj[2]) * dWdx[0]
- (vi[0] - vj[0]) * dWdx[2]);
curlv[2] += p.m[j]/p.rho[i] * ((vi[0] - vj[0]) * dWdx[1]
- (vi[1] - vj[1]) * dWdx[0]);
#endif
}
for (d = 0; d < DIM; d++) {
p_rhs.curlv[i*DIM+d] = curlv[d];
}
p_rhs.divv[i] = divv;
}
}
#endif // (NAVIER_STOKES || BALSARA_SWITCH || INVISCID_SPH)
// this adds zeroth order consistency but needs one more loop over all neighbours
#define SHEPARD_CORRECTION 0
#if TENSORIAL_CORRECTION
__global__ void tensorialCorrection(int *interactions)
{
register int i, inc, j, k, m;
register int d, dd;
int rv = 0;
inc = blockDim.x * gridDim.x;
register double r, dr[DIM], h, dWdr, tmp, f1, f2;
double W, dWdx[DIM];
double wend_f, wend_sml, q, distance;
for (i = threadIdx.x + blockIdx.x * blockDim.x; i < numParticles; i += inc) {
register double corrmatrix[DIM*DIM];
register double matrix[DIM*DIM];
for(d = 0; d < DIM*DIM; d++) {
corrmatrix[d] = 0;
matrix[d] = 0;
}
if (EOS_TYPE_IGNORE == matEOS[p_rhs.materialId[i]] || p_rhs.materialId[i] == EOS_TYPE_IGNORE) {
continue;
}
double shepard_correction = 0;
k = p.noi[i];
#if SHEPARD_CORRECTION
for (m = 0; m < k; m++) {
j = interactions[i*MAX_NUM_INTERACTIONS+m];
if (EOS_TYPE_IGNORE == matEOS[p_rhs.materialId[j]] || p_rhs.materialId[j] == EOS_TYPE_IGNORE) {
continue;
}
dr[0] = p.x[i] - p.x[j];
#if DIM > 1
dr[1] = p.y[i] - p.y[j];
#if DIM == 3
dr[2] = p.z[i] - p.z[j];
r = sqrt(dr[0]*dr[0]+dr[1]*dr[1]+dr[2]*dr[2]);
#elif DIM == 2
r = sqrt(dr[0]*dr[0]+dr[1]*dr[1]);
#endif
#endif
h = 0.5*(p.h[i] + p.h[j]);
kernel(&W, dWdx, &dWdr, dr, h);
shepard_correction += p.m[j]/p.rho[j]*W;
}
#endif
// loop over all interaction partner
for (m = 0; m < k; m++) {
j = interactions[i*MAX_NUM_INTERACTIONS+m];
if (EOS_TYPE_IGNORE == matEOS[p_rhs.materialId[j]] || p_rhs.materialId[j] == EOS_TYPE_IGNORE) {
continue;
}
dr[0] = p.x[i] - p.x[j];
#if DIM > 1
dr[1] = p.y[i] - p.y[j];
#if DIM == 3
dr[2] = p.z[i] - p.z[j];
r = sqrt(dr[0]*dr[0]+dr[1]*dr[1]+dr[2]*dr[2]);
#elif DIM == 2
r = sqrt(dr[0]*dr[0]+dr[1]*dr[1]);
#endif
#endif
h = 0.5*(p.h[i] + p.h[j]);
kernel(&W, dWdx, &dWdr, dr, h);
tmp = p.m[j] / p.rho[j] * dWdr/r;
#if SHEPARD_CORRECTION
if (shepard_correction > 0) {
tmp /= shepard_correction;
}
#endif
//p_rhs.tensorialCorrectiondWdrr[i*MAX_NUM_INTERACTIONS+m] = dWdrr;
for (d = 0; d < DIM; d++) {
for (dd = 0; dd < DIM; dd++) {
corrmatrix[d*DIM+dd] -= tmp * dr[d] * dr[dd];
}
}
} // end loop over interaction partners
rv = invertMatrix(corrmatrix, matrix);
// if something went wrong during inversion, use identity matrix
if (rv < 0 || k < MIN_NUMBER_OF_INTERACTIONS_FOR_TENSORIAL_CORRECTION_TO_WORK) {
for (d = 0; d < DIM; d++) {
for (dd = 0; dd < DIM; dd++) {
matrix[d*DIM+dd] = 0.0;
if (d == dd)
matrix[d*DIM+dd] = 1.0;
}
}
}
for (d = 0; d < DIM*DIM; d++) {
p_rhs.tensorialCorrectionMatrix[i*DIM*DIM+d] = matrix[d];
}
}
}
#endif