-
Notifications
You must be signed in to change notification settings - Fork 0
/
sturm.c
295 lines (276 loc) · 11.6 KB
/
sturm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/***********************************************************************
* ratpoints-2.2 *
* - A program to find rational points on hyperelliptic curves *
* Copyright (C) 2008, 2009, 2022 Michael Stoll *
* *
* This program is free software: you can redistribute it and/or *
* modify it under the terms of the GNU General Public License *
* as published by the Free Software Foundation, either version 2 of *
* the License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of version 2 of the GNU General *
* Public License along with this program. *
* If not, see <http://www.gnu.org/licenses/>. *
***********************************************************************/
/***********************************************************************
* sturm.c *
* *
* Sturm sequence and positivity intervals *
* *
* Michael Stoll, Jan 9, 2008 *
***********************************************************************/
#include "ratpoints.h"
/**************************************************************************
* Arguments of _ratpoints_compute_sturm() : (from the args argument) *
* *
* + cofs - points to an array of mpz_t's holding the coefficients of *
* the polynomial *
* + degree - the degree of the polynomial *
* + iter - the number of iteration steps in the refinement of the *
* intervals *
* + ivlist - points to an array of intervals giving the current search *
* domain *
* + num_iv - the number of intervals in ivlist, must be > 0 *
* *
* NOTE: ivlist must be able to store 1 + floor(degree/2) additional *
* intervals. *
* *
* Return values : *
* + >0 - normal operation, ivlist modified (intersection with positivity *
* domain), return value is number of intervals *
* + 0 - polynomial is everywhere negative, ivlist may be changed *
* + -1 - polynomial is not squarefree, ivlist unchanged *
**************************************************************************/
/* A helper function: evaluate the polynomial in cofs[] of given degree
at num/2^denexp and return the sign. */
static long eval_sign(ratpoints_args *args, mpz_t *cofs, long degree,
long num, long denexp)
{
long n, e, s;
mpz_t *work = args->work;
/* Horner scheme... */
mpz_set(work[0], cofs[degree]);
for(n = degree-1, e = denexp; n >= 0; n--, e += denexp)
{ mpz_mul_si(work[0], work[0], num);
mpz_mul_2exp(work[1], cofs[n], e);
mpz_add(work[0], work[0], work[1]);
}
s = mpz_cmp_si(work[0], 0);
return(s);
}
long _ratpoints_compute_sturm(ratpoints_args *args)
{
mpz_t *cofs = args->cof;
long degree = args->degree;
long iter = args->sturm;
ratpoints_interval *ivlist = args->domain;
long num_iv = args->num_inter;
long n, m, k, new_num;
mpz_t sturm[degree+1][degree+1]; /* Array to hold the polynomials */
long sturm_degs[degree+1]; /* The degrees of the polynomials */
mpz_t *work = args->work;
long count1 = 0, count2 = 0;
/* first initialize */
for(n = 0; n <= degree; n++)
{ for(m = 0; m <= degree; m++)
{ mpz_init(sturm[n][m]); }
}
/* copy polynomial f into first entry */
for(n = 0; n <= degree; n++) { mpz_set(sturm[0][n], cofs[n]); }
sturm_degs[0] = degree;
/* compute derivative in second entry */
for(n = 0; n < degree; n++)
{ mpz_set(work[2], cofs[n+1]);
mpz_mul_si(sturm[1][n], work[2], n+1);
}
sturm_degs[1] = degree - 1;
/* now do polynomial divisions ... */
for(k = 2; k <= degree; k++)
{ long d1 = sturm_degs[k-1], d2 = sturm_degs[k-2];
/* first copy sturm[k-2] into sturm[k] */
for(n = 0; n <= degree - (k-2); n++) { mpz_set(sturm[k][n], sturm[k-2][n]); }
/* now build linear combination that reduces the degree */
while(d2 >= d1)
{ mpz_gcd(work[2], sturm[k-1][d1], sturm[k][d2]);
mpz_fdiv_q(work[0], sturm[k-1][d1], work[2]);
mpz_fdiv_q(work[1], sturm[k][d2], work[2]);
if(mpz_cmp_si(work[0], 0) < 0)
{ mpz_neg(work[0], work[0]); mpz_neg(work[1], work[1]); }
/* sturm[k] = work[0] * sturm[k] - work[1] * x^(d2-d1) * sturm[k-1] */
for(n = 0; n <= d1; n++)
{ mpz_mul(sturm[k][n+d2-d1], sturm[k][n+d2-d1], work[0]);
mpz_submul(sturm[k][n+d2-d1], work[1], sturm[k-1][n]);
}
for(n = 0; n < d2-d1; n++)
{ mpz_mul(sturm[k][n], sturm[k][n], work[0]); }
d2--;
while(mpz_cmp_si(sturm[k][d2], 0) == 0 && d2 >= 0) { d2--; }
if(d2 < 0) /* not squarefree */
{ for(n = 0; n <= degree; n++)
{ for(m = 0; m <= degree; m++)
{ mpz_clear(sturm[n][m]); }
}
return(-1);
}
}
/* change sign */
for(n = 0; n <= d2; n++) { mpz_neg(sturm[k][n], sturm[k][n]); }
/* normalize */
mpz_set_ui(work[2], 0);
for(n = 0; n <= d2; n++)
{ mpz_gcd(work[2], work[2], sturm[k][n]);
if(mpz_cmp_ui(work[2], 1) == 0) { break; }
}
if(mpz_cmp_ui(work[2], 1) != 0)
{ for(n = 0; n <= d2; n++)
{ mpz_fdiv_q(sturm[k][n], sturm[k][n], work[2]); }
}
sturm_degs[k] = d2;
if(d2 == 0) { break; } /* sturm[k] is constant */
}
/* compute number of real zeros */
for(n = 0; n < k; n++)
{ long d1 = sturm_degs[n], d2 = sturm_degs[n+1];
int s1 = mpz_cmp_si(sturm[n][d1], 0),
s2 = mpz_cmp_si(sturm[n+1][d2], 0);
if(s1 != s2) { count1++; }
if(d1 & 1) { s1 = -s1; }
if(d2 & 1) { s2 = -s2; }
if(s1 != s2) { count2++; }
}
if(count2 == count1 && mpz_cmp_si(cofs[0], 0) < 0)
{ /* no real roots, negative constant term ==> no points */
for(n = 0; n <= degree; n++)
{ for(m = 0; m <= degree; m++)
{ mpz_clear(sturm[n][m]); }
}
args->num_inter = 0;
return(0);
}
/* Find list of intervals that may contain points */
/* recall: typedef struct {double low; double up;} ratpoints_interval; */
{ ratpoints_interval ivlocal[1 + (degree>>1)];
ratpoints_interval *iptr = &ivlocal[0];
long max = (long)(((unsigned long)(-1))>>1);
long min = -max;
long num_intervals;
long slcf = mpz_cmp_si(cofs[degree], 0);
/* recursive helper function */
void iterate(long nl, long nr, long del, long der, long cleft, long cright,
long sl, long sr, long depth)
{ /* nl/2^del, nr/2^der : interval left/right endpoints,
cleft, cright: sign change counts at endpoints,
sl, sr: signs at endpoints,
depth: iteration depth */
if(cleft == cright && sl < 0) { return; }
/* here we know the polynomial is negative on the interval */
if((cleft == cright && sl > 0) || depth >= iter)
/* we have to add/extend an interval if we either know that
the polynomial is positive on the interval (first condition)
or the maximal iteration depth has been reached (second condition) */
{ double l = ((double)nl)/((double)(1<<del));
double u = ((double)nr)/((double)(1<<der));
if(iptr == &ivlocal[0])
{ iptr->low = l; iptr->up = u; iptr++; }
else
{ if((iptr-1)->up == l) /* extend interval */
{ (iptr-1)->up = u; }
else /* new interval */
{ iptr->low = l; iptr->up = u; iptr++; }
}
return;
}
/* now we must split the interval and evaluate the sturm sequence
at the midpoint */
{ long nm, dem, s0, s1, s2, s, cmid = 0, n;
if(nl == min)
{ if(nr == max) { nm = 0; dem = 0; }
else { nm = (nr == 0) ? -1 : 2*nr; dem = 0; }
}
else
{ if(nr == max) { nm = (nl == 0) ? 1 : 2*nl; dem = 0; }
else /* "normal" case */
{ if(del == der) /* then both are zero */
{ if(((nl+nr) & 1) == 0) { nm = (nl+nr)>>1; dem = 0; }
else { nm = nl+nr; dem = 1; }
}
else /* here one de* is greater */
{ if(del > der) { nm = nl + (nr<<(del-der)); dem = del+1; }
else { nm = (nl<<(der-del)) + nr; dem = der+1; }
}
}
}
s0 = eval_sign(args, sturm[0], sturm_degs[0], nm, dem);
s1 = eval_sign(args, sturm[1], sturm_degs[1], nm, dem);
if(s0*s1 == -1) { cmid++; }
s = (s1 == 0) ? s0 : s1;
for(n = 2; n <= k; n++)
{ s2 = eval_sign(args, sturm[n], sturm_degs[n], nm, dem);
if(s2 == -s) { cmid++; s = s2; }
else if(s2 != 0) { s = s2; }
}
/* now recurse */
iterate(nl, nm, del, dem, cleft, (s0==0) ? (cmid+1) : cmid,
sl, (s0==0) ? -s1 : s0, depth+1);
iterate(nm, nr, dem, der, cmid, cright,
(s0==0) ? s1 : s0, sr, depth+1);
}
} /* end iterate() */
iterate(min, max, 0, 0, count2, count1,
(degree & 1) ? -slcf : slcf, slcf, 0);
num_intervals = iptr - &ivlocal[0];
/* intersect with given intervals */
{ ratpoints_interval local_copy[num_iv];
long n, n1, n2;
/* make a copy of the given list */
for(n = 0; n < num_iv; n++) { local_copy[n] = ivlist[n]; }
n1 = 0; n2 = 0; n = 0;
while(n1 < num_intervals && n2 < num_iv)
{ if(ivlocal[n1].low <= local_copy[n2].low)
{ if(ivlocal[n1].up < local_copy[n2].low)
{ n1++; } /* can forget this interval */
else
{ if(ivlocal[n1].up <= local_copy[n2].up)
{ /* note intersection */
ivlist[n].low = local_copy[n2].low;
ivlist[n].up = ivlocal[n1].up;
n++;
n1++;
}
else
{ /* note intersection */
ivlist[n] = local_copy[n2];
n++;
n2++;
} } }
else /* here, ivlocal[n1].low > local_copy[n2].low */
{ if(local_copy[n2].up < ivlocal[n1].low)
{ n2++; } /* can forget this interval */
else
{ if(local_copy[n2].up <= ivlocal[n1].up)
{ /* note intersection */
ivlist[n].low = ivlocal[n1].low;
ivlist[n].up = local_copy[n2].up;
n++;
n2++;
}
else
{ /* note intersection */
ivlist[n] = ivlocal[n1];
n++;
n1++;
} } } }
args->num_inter = new_num = n;
}
}
for(n = 0; n <= degree; n++)
{ for(m = 0; m <= degree; m++)
{ mpz_clear(sturm[n][m]); }
}
return(new_num);
}