-
Notifications
You must be signed in to change notification settings - Fork 4.6k
/
Copy pathDQNcar.py
536 lines (430 loc) · 19.1 KB
/
DQNcar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import setup_path
import airsim
import math
import time
from argparse import ArgumentParser
#import gym #pip install gym
import numpy as np
from cntk.core import Value #pip install cntk-gpu
from cntk.initializer import he_uniform
from cntk.layers import Sequential, Convolution2D, Dense, default_options
from cntk.layers.typing import Signature, Tensor
from cntk.learners import adam, learning_rate_schedule, momentum_schedule, UnitType
from cntk.logging import TensorBoardProgressWriter
from cntk.ops import abs, argmax, element_select, less, relu, reduce_max, reduce_sum, square
from cntk.ops.functions import CloneMethod, Function
from cntk.train import Trainer
import pickle
class ReplayMemory(object):
"""
ReplayMemory keeps track of the environment dynamic.
We store all the transitions (s(t), action, s(t+1), reward, done).
The replay memory allows us to efficiently sample minibatches from it, and generate the correct state representation
(w.r.t the number of previous frames needed).
"""
def __init__(self, size, sample_shape, history_length=4):
self._pos = 0
self._count = 0
self._max_size = size
self._history_length = max(1, history_length)
self._state_shape = sample_shape
self._states = np.zeros((size,) + sample_shape, dtype=np.float32)
self._actions = np.zeros(size, dtype=np.uint8)
self._rewards = np.zeros(size, dtype=np.float32)
self._terminals = np.zeros(size, dtype=np.float32)
def __len__(self):
""" Returns the number of items currently present in the memory
Returns: Int >= 0
"""
return self._count
def append(self, state, action, reward, done):
""" Appends the specified transition to the memory.
Attributes:
state (Tensor[sample_shape]): The state to append
action (int): An integer representing the action done
reward (float): An integer representing the reward received for doing this action
done (bool): A boolean specifying if this state is a terminal (episode has finished)
"""
assert state.shape == self._state_shape, \
'Invalid state shape (required: %s, got: %s)' % (self._state_shape, state.shape)
self._states[self._pos] = state
self._actions[self._pos] = action
self._rewards[self._pos] = reward
self._terminals[self._pos] = done
self._count = max(self._count, self._pos + 1)
self._pos = (self._pos + 1) % self._max_size
def sample(self, size):
""" Generate size random integers mapping indices in the memory.
The returned indices can be retrieved using #get_state().
See the method #minibatch() if you want to retrieve samples directly.
Attributes:
size (int): The minibatch size
Returns:
Indexes of the sampled states ([int])
"""
# Local variable access is faster in loops
count, pos, history_len, terminals = self._count - 1, self._pos, \
self._history_length, self._terminals
indexes = []
while len(indexes) < size:
index = np.random.randint(history_len, count)
if index not in indexes:
# if not wrapping over current pointer,
# then check if there is terminal state wrapped inside
if not (index >= pos > index - history_len):
if not terminals[(index - history_len):index].any():
indexes.append(index)
return indexes
def minibatch(self, size):
""" Generate a minibatch with the number of samples specified by the size parameter.
Attributes:
size (int): Minibatch size
Returns:
tuple: Tensor[minibatch_size, input_shape...], [int], [float], [bool]
"""
indexes = self.sample(size)
pre_states = np.array([self.get_state(index) for index in indexes], dtype=np.float32)
post_states = np.array([self.get_state(index + 1) for index in indexes], dtype=np.float32)
actions = self._actions[indexes]
rewards = self._rewards[indexes]
dones = self._terminals[indexes]
return pre_states, actions, post_states, rewards, dones
def get_state(self, index):
"""
Return the specified state with the replay memory. A state consists of
the last `history_length` perceptions.
Attributes:
index (int): State's index
Returns:
State at specified index (Tensor[history_length, input_shape...])
"""
if self._count == 0:
raise IndexError('Empty Memory')
index %= self._count
history_length = self._history_length
# If index > history_length, take from a slice
if index >= history_length:
return self._states[(index - (history_length - 1)):index + 1, ...]
else:
indexes = np.arange(index - history_length + 1, index + 1)
return self._states.take(indexes, mode='wrap', axis=0)
class History(object):
"""
Accumulator keeping track of the N previous frames to be used by the agent
for evaluation
"""
def __init__(self, shape):
self._buffer = np.zeros(shape, dtype=np.float32)
@property
def value(self):
""" Underlying buffer with N previous states stacked along first axis
Returns:
Tensor[shape]
"""
return self._buffer
def append(self, state):
""" Append state to the history
Attributes:
state (Tensor) : The state to append to the memory
"""
self._buffer[:-1] = self._buffer[1:]
self._buffer[-1] = state
def reset(self):
""" Reset the memory. Underlying buffer set all indexes to 0
"""
self._buffer.fill(0)
class LinearEpsilonAnnealingExplorer(object):
"""
Exploration policy using Linear Epsilon Greedy
Attributes:
start (float): start value
end (float): end value
steps (int): number of steps between start and end
"""
def __init__(self, start, end, steps):
self._start = start
self._stop = end
self._steps = steps
self._step_size = (end - start) / steps
def __call__(self, num_actions):
"""
Select a random action out of `num_actions` possibilities.
Attributes:
num_actions (int): Number of actions available
"""
return np.random.choice(num_actions)
def _epsilon(self, step):
""" Compute the epsilon parameter according to the specified step
Attributes:
step (int)
"""
if step < 0:
return self._start
elif step > self._steps:
return self._stop
else:
return self._step_size * step + self._start
def is_exploring(self, step):
""" Commodity method indicating if the agent should explore
Attributes:
step (int) : Current step
Returns:
bool : True if exploring, False otherwise
"""
return np.random.rand() < self._epsilon(step)
def huber_loss(y, y_hat, delta):
""" Compute the Huber Loss as part of the model graph
Huber Loss is more robust to outliers. It is defined as:
if |y - y_hat| < delta :
0.5 * (y - y_hat)**2
else :
delta * |y - y_hat| - 0.5 * delta**2
Attributes:
y (Tensor[-1, 1]): Target value
y_hat(Tensor[-1, 1]): Estimated value
delta (float): Outliers threshold
Returns:
CNTK Graph Node
"""
half_delta_squared = 0.5 * delta * delta
error = y - y_hat
abs_error = abs(error)
less_than = 0.5 * square(error)
more_than = (delta * abs_error) - half_delta_squared
loss_per_sample = element_select(less(abs_error, delta), less_than, more_than)
return reduce_sum(loss_per_sample, name='loss')
class DeepQAgent(object):
"""
Implementation of Deep Q Neural Network agent like in:
Nature 518. "Human-level control through deep reinforcement learning" (Mnih & al. 2015)
"""
def __init__(self, input_shape, nb_actions,
gamma=0.99, explorer=LinearEpsilonAnnealingExplorer(1, 0.1, 1000000),
learning_rate=0.00025, momentum=0.95, minibatch_size=32,
memory_size=500000, train_after=200000, train_interval=4, target_update_interval=10000,
monitor=True):
self.input_shape = input_shape
self.nb_actions = nb_actions
self.gamma = gamma
self._train_after = train_after
self._train_interval = train_interval
self._target_update_interval = target_update_interval
self._explorer = explorer
self._minibatch_size = minibatch_size
self._history = History(input_shape)
self._memory = ReplayMemory(memory_size, input_shape[1:], 4)
self._num_actions_taken = 0
# Metrics accumulator
self._episode_rewards, self._episode_q_means, self._episode_q_stddev = [], [], []
# Action Value model (used by agent to interact with the environment)
with default_options(activation=relu, init=he_uniform()):
self._action_value_net = Sequential([
Convolution2D((8, 8), 16, strides=4),
Convolution2D((4, 4), 32, strides=2),
Convolution2D((3, 3), 32, strides=1),
Dense(256, init=he_uniform(scale=0.01)),
Dense(nb_actions, activation=None, init=he_uniform(scale=0.01))
])
self._action_value_net.update_signature(Tensor[input_shape])
# Target model used to compute the target Q-values in training, updated
# less frequently for increased stability.
self._target_net = self._action_value_net.clone(CloneMethod.freeze)
# Function computing Q-values targets as part of the computation graph
@Function
@Signature(post_states=Tensor[input_shape], rewards=Tensor[()], terminals=Tensor[()])
def compute_q_targets(post_states, rewards, terminals):
return element_select(
terminals,
rewards,
gamma * reduce_max(self._target_net(post_states), axis=0) + rewards,
)
# Define the loss, using Huber Loss (more robust to outliers)
@Function
@Signature(pre_states=Tensor[input_shape], actions=Tensor[nb_actions],
post_states=Tensor[input_shape], rewards=Tensor[()], terminals=Tensor[()])
def criterion(pre_states, actions, post_states, rewards, terminals):
# Compute the q_targets
q_targets = compute_q_targets(post_states, rewards, terminals)
# actions is a 1-hot encoding of the action done by the agent
q_acted = reduce_sum(self._action_value_net(pre_states) * actions, axis=0)
# Define training criterion as the Huber Loss function
return huber_loss(q_targets, q_acted, 1.0)
# Adam based SGD
lr_schedule = learning_rate_schedule(learning_rate, UnitType.minibatch)
m_schedule = momentum_schedule(momentum)
vm_schedule = momentum_schedule(0.999)
l_sgd = adam(self._action_value_net.parameters, lr_schedule,
momentum=m_schedule, variance_momentum=vm_schedule)
self._metrics_writer = TensorBoardProgressWriter(freq=1, log_dir='metrics', model=criterion) if monitor else None
self._learner = l_sgd
self._trainer = Trainer(criterion, (criterion, None), l_sgd, self._metrics_writer)
#self._trainer.restore_from_checkpoint('models/oldmodels/model800000')
def act(self, state):
""" This allows the agent to select the next action to perform in regard of the current state of the environment.
It follows the terminology used in the Nature paper.
Attributes:
state (Tensor[input_shape]): The current environment state
Returns: Int >= 0 : Next action to do
"""
# Append the state to the short term memory (ie. History)
self._history.append(state)
# If policy requires agent to explore, sample random action
if self._explorer.is_exploring(self._num_actions_taken):
action = self._explorer(self.nb_actions)
else:
# Use the network to output the best action
env_with_history = self._history.value
q_values = self._action_value_net.eval(
# Append batch axis with only one sample to evaluate
env_with_history.reshape((1,) + env_with_history.shape)
)
self._episode_q_means.append(np.mean(q_values))
self._episode_q_stddev.append(np.std(q_values))
# Return the value maximizing the expected reward
action = q_values.argmax()
# Keep track of interval action counter
self._num_actions_taken += 1
return action
def observe(self, old_state, action, reward, done):
""" This allows the agent to observe the output of doing the action it selected through act() on the old_state
Attributes:
old_state (Tensor[input_shape]): Previous environment state
action (int): Action done by the agent
reward (float): Reward for doing this action in the old_state environment
done (bool): Indicate if the action has terminated the environment
"""
self._episode_rewards.append(reward)
# If done, reset short term memory (ie. History)
if done:
# Plot the metrics through Tensorboard and reset buffers
if self._metrics_writer is not None:
self._plot_metrics()
self._episode_rewards, self._episode_q_means, self._episode_q_stddev = [], [], []
# Reset the short term memory
self._history.reset()
# Append to long term memory
self._memory.append(old_state, action, reward, done)
def train(self):
""" This allows the agent to train itself to better understand the environment dynamics.
The agent will compute the expected reward for the state(t+1)
and update the expected reward at step t according to this.
The target expectation is computed through the Target Network, which is a more stable version
of the Action Value Network for increasing training stability.
The Target Network is a frozen copy of the Action Value Network updated as regular intervals.
"""
agent_step = self._num_actions_taken
if agent_step >= self._train_after:
if (agent_step % self._train_interval) == 0:
pre_states, actions, post_states, rewards, terminals = self._memory.minibatch(self._minibatch_size)
self._trainer.train_minibatch(
self._trainer.loss_function.argument_map(
pre_states=pre_states,
actions=Value.one_hot(actions.reshape(-1, 1).tolist(), self.nb_actions),
post_states=post_states,
rewards=rewards,
terminals=terminals
)
)
# Update the Target Network if needed
if (agent_step % self._target_update_interval) == 0:
self._target_net = self._action_value_net.clone(CloneMethod.freeze)
filename = "models\model%d" % agent_step
self._trainer.save_checkpoint(filename)
def _plot_metrics(self):
"""Plot current buffers accumulated values to visualize agent learning
"""
if len(self._episode_q_means) > 0:
mean_q = np.asscalar(np.mean(self._episode_q_means))
self._metrics_writer.write_value('Mean Q per ep.', mean_q, self._num_actions_taken)
if len(self._episode_q_stddev) > 0:
std_q = np.asscalar(np.mean(self._episode_q_stddev))
self._metrics_writer.write_value('Mean Std Q per ep.', std_q, self._num_actions_taken)
self._metrics_writer.write_value('Sum rewards per ep.', sum(self._episode_rewards), self._num_actions_taken)
def transform_input(responses):
img1d = np.array(responses[0].image_data_float, dtype=np.float)
img1d = 255/np.maximum(np.ones(img1d.size), img1d)
img2d = np.reshape(img1d, (responses[0].height, responses[0].width))
from PIL import Image
image = Image.fromarray(img2d)
im_final = np.array(image.resize((84, 84)).convert('L'))
return im_final
def interpret_action(action):
car_controls.brake = 0
car_controls.throttle = 1
if action == 0:
car_controls.throttle = 0
car_controls.brake = 1
elif action == 1:
car_controls.steering = 0
elif action == 2:
car_controls.steering = 0.5
elif action == 3:
car_controls.steering = -0.5
elif action == 4:
car_controls.steering = 0.25
else:
car_controls.steering = -0.25
return car_controls
def compute_reward(car_state):
MAX_SPEED = 300
MIN_SPEED = 10
thresh_dist = 3.5
beta = 3
z = 0
pts = [np.array([0, -1, z]), np.array([130, -1, z]), np.array([130, 125, z]), np.array([0, 125, z]), np.array([0, -1, z]), np.array([130, -1, z]), np.array([130, -128, z]), np.array([0, -128, z]), np.array([0, -1, z])]
pd = car_state.kinematics_estimated.position
car_pt = np.array([pd.x_val, pd.y_val, pd.z_val])
dist = 10000000
for i in range(0, len(pts)-1):
dist = min(dist, np.linalg.norm(np.cross((car_pt - pts[i]), (car_pt - pts[i+1])))/np.linalg.norm(pts[i]-pts[i+1]))
#print(dist)
if dist > thresh_dist:
reward = -3
else:
reward_dist = (math.exp(-beta*dist) - 0.5)
reward_speed = (((car_state.speed - MIN_SPEED)/(MAX_SPEED - MIN_SPEED)) - 0.5)
reward = reward_dist + reward_speed
return reward
def isDone(car_state, car_controls, reward):
done = 0
if reward < -1:
done = 1
if car_controls.brake == 0:
if car_state.speed <= 5:
done = 1
return done
client = airsim.CarClient()
client.confirmConnection()
client.enableApiControl(True)
car_controls = airsim.CarControls()
# Make RL agent
NumBufferFrames = 4
SizeRows = 84
SizeCols = 84
NumActions = 6
agent = DeepQAgent((NumBufferFrames, SizeRows, SizeCols), NumActions, monitor=True)
# Train
epoch = 100
current_step = 0
max_steps = epoch * 250000
responses = client.simGetImages([airsim.ImageRequest("0", airsim.ImageType.DepthPerspective, True, False)])
current_state = transform_input(responses)
while True:
action = agent.act(current_state)
car_controls = interpret_action(action)
client.setCarControls(car_controls)
car_state = client.getCarState()
reward = compute_reward(car_state)
done = isDone(car_state, car_controls, reward)
if done == 1:
reward = -10
agent.observe(current_state, action, reward, done)
agent.train()
if done:
client.reset()
car_control = interpret_action(1)
client.setCarControls(car_control)
time.sleep(1)
current_step +=1
responses = client.simGetImages([airsim.ImageRequest("0", airsim.ImageType.DepthPerspective, True, False)])
current_state = transform_input(responses)