-
Notifications
You must be signed in to change notification settings - Fork 965
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Error: Caffe -> IR -> CNTK #48
Comments
guest the -w DSD_SqueezeNet_cmodel.caffemodel should be -w DSD_SqueezeNet_cmodel.npy in python -m mmdnn.conversion.examples.cntk.imagenet_test |
Of course... But unfortunately, trying the exactly same with SqeezeNet1.0 and DSD SqueezeNet fails. This is without caffe:
With caffe I get with both networks the following output:
Like recently, this is the call I make:
(not changed at all within this issue and the last issue -> without coffe this step works) I use the 3.5 CPU Release Version from here: https://github.com/BVLC/caffe/tree/windows With Caffe even v1.1 of the SqueezeNet model stopped working (also the same error) |
Hi @aWeinzierl , tested with ubuntu 16.04, python3.5.2, caffe 1.0.0, cntk 2.3. No error with Squeezenet 1.1.
$ python3 -m mmdnn.conversion.examples.caffe.extract_model -n squeezenet -i mmdnn/conversion/examples/data/seagull.jpg
.
.
.
[(21, 0.5285601), (128, 0.071685813), (144, 0.064104252), (416, 0.050044473), (22, 0.049522042)] Rename: $ mv deploy.txt squeezenet_v1.1.prototxt
$ python3 -m mmdnn.conversion._script.convertToIR -f caffe -d kit_imagenet -n squeezenet_v1.1.prototxt -w squeezenet_v1.1.caffemodel
.
.
.
IR network structure is saved as [kit_imagenet.json].
IR network structure is saved as [kit_imagenet.pb].
IR weights are saved as [kit_imagenet.npy].
$ python3 -m mmdnn.conversion._script.IRToCode -f cntk -in kit_imagenet.pb -iw kit_imagenet.npy -d kit_imagenet.py
Parse file [kit_imagenet.pb] with binary format successfully.
Target network code snippet is saved as [kit_imagenet.py].
$ python3 -m mmdnn.conversion.examples.cntk.imagenet_test -p squeezenet -s caffe -n kit_imagenet.py -w kit_imagenet.npy
[(21, 0.52856004), (128, 0.071685657), (144, 0.064104237), (416, 0.050044276), (22, 0.049522318)]
Test model [squeezenet] from [caffe] passed. The inference result is almost equal.
$ python3 -m mmdnn.conversion.examples.cntk.imagenet_test -n kit_imagenet.py -w kit_imagenet.npy --dump caffe_squeezenet.dnn
CNTK model file is saved as [caffe_squeezenet.dnn], generated by [kit_imagenet.py] and [kit_imagenet.npy]. |
Thank you for the step by step guidance. It works with my configuration, too. The problem was that caffe does not accept training proto files. Although it works without any problems with a training proto while I do not use caffe. But, I ran into the same problem like before (when I did not use caffe). This also happens with the official SqueezeNet1.0 model and proto from here. This should exclude a wrong conversion.
(reference to the first code insertion in post 3 in this issue) |
I want to convert a SqueezeNet model to CNTK. For instance, https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1
When I try to generate the CNTK model using the generated python script as well as the .npy file, which I retrieved using the following steps, I am receiving the error posted below.
Error:
The text was updated successfully, but these errors were encountered: