This repository has been archived by the owner on Jun 30, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 35
/
train_sentiment_baseline.py
262 lines (206 loc) · 10.2 KB
/
train_sentiment_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
from torch.nn.utils.rnn import pack_padded_sequence
import pickle
import json
import matplotlib.pyplot as plt
from glob import glob
import time
import copy
from tqdm import tqdm
from transformers import BertTokenizer, BertLMHeadModel, BertConfig
from data import ZuCo_dataset
from model_sentiment import BaselineMLPSentence, BaselineLSTM, NaiveFineTunePretrainedBert
from config import get_config
# Function to calculate the accuracy of our predictions vs labels
def flat_accuracy(preds, labels):
# preds: numpy array: N * 3
# labels: numpy array: N
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat) / len(labels_flat)
def flat_accuracy_top_k(preds, labels,k):
topk_preds = []
for pred in preds:
topk = pred.argsort()[-k:][::-1]
topk_preds.append(list(topk))
# print(topk_preds)
topk_preds = list(topk_preds)
right_count = 0
# print(len(labels))
for i in range(len(labels)):
l = labels[i][0]
if l in topk_preds[i]:
right_count+=1
return right_count/len(labels)
def train_model(dataloaders, device, model, criterion, optimizer, scheduler, num_epochs=25, checkpoint_path_best = './checkpoints/eeg_sentiment/best/test.pt', checkpoint_path_last = './checkpoints/eeg_sentiment/last/test.pt'):
# modified from: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_loss = 100000000000
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'dev']:
total_accuracy = 0.0
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
# Iterate over data.
for input_word_eeg_features, seq_lens, input_masks, input_mask_invert, target_ids, target_mask, sentiment_labels, sent_level_EEG in tqdm(dataloaders[phase]):
input_word_eeg_features = input_word_eeg_features.to(device).float()
sent_level_EEG = sent_level_EEG.to(device)
input_masks = input_masks.to(device)
sentiment_labels = sentiment_labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
if isinstance(model, BaselineMLPSentence):
# forward
logits = model(sent_level_EEG) # before softmax
# calculate loss
loss = criterion(logits, sentiment_labels)
elif isinstance(model, BaselineLSTM):
x_packed = pack_padded_sequence(input_word_eeg_features, seq_lens, batch_first=True, enforce_sorted=False)
logits = model(x_packed)
# calculate loss
loss = criterion(logits, sentiment_labels)
elif isinstance(model, NaiveFineTunePretrainedBert):
output = model(input_word_eeg_features, input_masks, sentiment_labels)
logits = output.logits
loss = output.loss
# backward + optimize only if in training phase
if phase == 'train':
# with torch.autograd.detect_anomaly():
loss.backward()
optimizer.step()
# calculate accuracy
preds_cpu = logits.detach().cpu().numpy()
label_cpu = sentiment_labels.cpu().numpy()
total_accuracy += flat_accuracy(preds_cpu, label_cpu)
# statistics
running_loss += loss.item() * sent_level_EEG.size()[0] # batch loss
# print('[DEBUG]loss:',loss.item())
# print('#################################')
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = total_accuracy / len(dataloaders[phase])
print('{} Loss: {:.4f}'.format(phase, epoch_loss))
print('{} Acc: {:.4f}'.format(phase, epoch_acc))
# deep copy the model
if phase == 'dev' and (epoch_acc > best_acc):
best_loss = epoch_loss
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
'''save checkpoint'''
torch.save(model.state_dict(), checkpoint_path_best)
print(f'update best on dev checkpoint: {checkpoint_path_best}')
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val loss: {:4f}'.format(best_loss))
print('Best val acc: {:4f}'.format(best_acc))
torch.save(model.state_dict(), checkpoint_path_last)
print(f'update last checkpoint: {checkpoint_path_last}')
# load best model weights
model.load_state_dict(best_model_wts)
return model
if __name__ == '__main__':
args = get_config('train_sentiment_baseline')
''' config param'''
num_epochs = args['num_epoch']
step_lr = args['learning_rate']
'''dataset division'''
dataset_setting = 'unique_sent'
# subject_choice = 'ALL
subject_choice = args['subjects']
print(f'![Debug]using {subject_choice}')
# eeg_type_choice = 'GD
eeg_type_choice = args['eeg_type']
print(f'[INFO]eeg type {eeg_type_choice}')
# bands_choice = ['_t1']
# bands_choice = ['_t1','_t2','_a1','_a2','_b1','_b2','_g1','_g2']
bands_choice = args['eeg_bands']
print(f'[INFO]using bands {bands_choice}')
'''model name'''
# model_name = 'BaselineMLP'
# model_name = 'BaselineLSTM'
# model_name = 'NaiveFinetuneBert'
model_name = args['model_name']
batch_size = 32
save_path = args['save_path']
save_name = f'{model_name}_{step_lr}_b{batch_size}_{dataset_setting}_{eeg_type_choice}'
if model_name == 'BaselineLSTM':
num_layers = 4
save_name = f'{model_name}_numLayers-{num_layers}_{step_lr}_b{batch_size}_{dataset_setting}_{eeg_type_choice}'
output_checkpoint_name_best = save_path + f'/best/{save_name}.pt'
output_checkpoint_name_last = save_path + f'/last/{save_name}.pt'
''' set random seeds '''
seed_val = 312
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
''' set up device '''
# use cuda
if torch.cuda.is_available():
dev = args['cuda']
else:
dev = "cpu"
# CUDA_VISIBLE_DEVICES=0,1,2,3
device = torch.device(dev)
print(f'[INFO]using device {dev}')
''' load pickle'''
whole_dataset_dict = []
dataset_path_task1 = './dataset/ZuCo/task1-SR/pickle/task1-SR-dataset.pickle'
with open(dataset_path_task1, 'rb') as handle:
whole_dataset_dict.append(pickle.load(handle))
'''set up tokenizer'''
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
''' set up dataloader '''
# train dataset
train_set = ZuCo_dataset(whole_dataset_dict, 'train', tokenizer, subject = subject_choice, eeg_type = eeg_type_choice, bands = bands_choice, setting = dataset_setting)
# dev dataset
dev_set = ZuCo_dataset(whole_dataset_dict, 'dev', tokenizer, subject = subject_choice, eeg_type = eeg_type_choice, bands = bands_choice, setting = dataset_setting)
# test dataset
# test_set = ZuCo_dataset(whole_dataset_dict, 'test', tokenizer, subject = subject_choice, eeg_type = eeg_type_choice, bands = bands_choice)
dataset_sizes = {'train': len(train_set), 'dev': len(dev_set)}
print('[INFO]train_set size: ', len(train_set))
print('[INFO]dev_set size: ', len(dev_set))
# train dataloader
train_dataloader = DataLoader(train_set, batch_size = batch_size, shuffle=True, num_workers=4)
# dev dataloader
val_dataloader = DataLoader(dev_set, batch_size = 1, shuffle=False, num_workers=4)
# dataloaders
dataloaders = {'train':train_dataloader, 'dev':val_dataloader}
''' set up model '''
if model_name == 'BaselineMLP':
print('[INFO]Model: BaselineMLP')
model = BaselineMLPSentence(input_dim = 105*len(bands_choice), hidden_dim = 128, output_dim = 3)
elif model_name == 'BaselineLSTM':
print('[INFO]Model: BaselineLSTM')
model = BaselineLSTM(input_dim = 105*len(bands_choice), hidden_dim = 256, output_dim = 3, num_layers = num_layers)
elif model_name == 'NaiveFinetuneBert':
print('[INFO]Model: NaiveFinetuneBert')
model = NaiveFineTunePretrainedBert(input_dim = 105*len(bands_choice), hidden_dim = 768, output_dim = 3)
model.to(device)
"""save config"""
with open(f'./config/eeg_sentiment/{save_name}.json', 'w') as out_config:
json.dump(args, out_config, indent = 4)
''' training loop '''
''' set up optimizer and scheduler'''
optimizer_step1 = optim.SGD(model.parameters(), lr=step_lr, momentum=0.9)
exp_lr_scheduler_step1 = lr_scheduler.StepLR(optimizer_step1, step_size=20, gamma=0.5)
''' set up loss function '''
criterion = nn.CrossEntropyLoss()
print('=== start training ... ===')
# return best loss model from step1 training
model = train_model(dataloaders, device, model, criterion, optimizer_step1, exp_lr_scheduler_step1, num_epochs=num_epochs, checkpoint_path_best = output_checkpoint_name_best, checkpoint_path_last = output_checkpoint_name_last)