forked from Privacy-Graph/PrivGraph
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_vary_N.py
313 lines (211 loc) · 9.29 KB
/
main_vary_N.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import community
import networkx as nx
import time
import numpy as np
from numpy.random import laplace
from sklearn import metrics
from utils import *
import os
def main_vary_N(dataset_name='Chamelon',epsilon=2,e1_r=1/3,e2_r=1/3,N_List=[10,20],exp_num=10,save_csv=False):
t_begin = time.time()
data_path = './data/' + dataset_name + '.txt'
mat0,mid = get_mat(data_path)
cols = ['eps','exper','N','nmi','evc_overlap','evc_MAE','deg_kl', \
'diam_rel','cc_rel','mod_rel']
all_data = pd.DataFrame(None,columns=cols)
# original graph
mat0_graph = nx.from_numpy_array(mat0,create_using=nx.Graph)
mat0_edge = mat0_graph.number_of_edges()
mat0_node = mat0_graph.number_of_nodes()
print('Dataset:%s'%(dataset_name))
print('Node number:%d'%(mat0_graph.number_of_nodes()))
print('Edge number:%d'%(mat0_graph.number_of_edges()))
mat0_par = community.best_partition(mat0_graph)
mat0_degree = np.sum(mat0,0)
mat0_deg_dist = np.bincount(np.int64(mat0_degree)) # degree distribution
mat0_evc = nx.eigenvector_centrality(mat0_graph,max_iter=10000)
mat0_evc_a = dict(sorted(mat0_evc.items(),key = lambda x:x[1],reverse=True))
mat0_evc_ak = list(mat0_evc_a.keys())
mat0_evc_val = np.array(list(mat0_evc_a.values()))
evc_kn = np.int64(0.01*mat0_node)
mat0_diam = cal_diam(mat0)
mat0_cc = nx.transitivity(mat0_graph)
mat0_mod = community.modularity(mat0_par,mat0_graph)
all_deg_kl = []
all_mod_rel = []
all_nmi_arr = []
all_evc_overlap = []
all_evc_MAE = []
all_cc_rel = []
all_diam_rel = []
for ni in range(len(N_List)):
ti = time.time()
n1 = N_List[ni]
e1 = e1_r * epsilon
e2 = e2_r * epsilon
e3_r = 1 - e1_r - e2_r
e3 = e3_r * epsilon
ed = e3
ev = e3
ev_lambda = 1/ed
dd_lam = 2/ev
nmi_arr = np.zeros([exp_num])
deg_kl_arr = np.zeros([exp_num])
mod_rel_arr = np.zeros([exp_num])
cc_rel_arr = np.zeros([exp_num])
diam_rel_arr = np.zeros([exp_num])
evc_overlap_arr = np.zeros([exp_num])
evc_MAE_arr = np.zeros([exp_num])
for exper in range(exp_num):
print('-----------N=%d,exper=%d/%d-------------'%(n1,exper+1,exp_num))
t1 = time.time()
# Community Initialization
mat1_pvarr1 = community_init(mat0,mat0_graph,epsilon=e1,nr=n1)
part1 = {}
for i in range(len(mat1_pvarr1)):
part1[i] = mat1_pvarr1[i]
# Community Adjustment
mat1_par1 = comm.best_partition(mat0_graph,part1,epsilon_EM=e2)
mat1_pvarr = np.array(list(mat1_par1.values()))
# Information Extraction
mat1_pvs = []
for i in range(max(mat1_pvarr)+1):
pv1 = np.where(mat1_pvarr==i)[0]
pvs = list(pv1)
mat1_pvs.append(pvs)
comm_n = max(mat1_pvarr) + 1
ev_mat = np.zeros([comm_n,comm_n],dtype=np.int64)
# edge vector
for i in range(comm_n):
pi = mat1_pvs[i]
ev_mat[i,i] = np.sum(mat0[np.ix_(pi,pi)])
for j in range(i+1,comm_n):
pj = mat1_pvs[j]
ev_mat[i,j] = int(np.sum(mat0[np.ix_(pi,pj)]))
ev_mat[j,i] = ev_mat[i,j]
ga = get_uptri_arr(ev_mat,ind=1)
ga_noise = ga + laplace(0,ev_lambda,len(ga))
ga_noise_pp = FO_pp(ga_noise)
ev_mat = get_upmat(ga_noise_pp,comm_n,ind=1)
# degree sequence
dd_s = []
for i in range(comm_n):
dd1 = mat0[np.ix_(mat1_pvs[i],mat1_pvs[i])]
dd1 = np.sum(dd1,1)
dd1 = (dd1 + laplace(0,dd_lam,len(dd1))).astype(int)
dd1 = FO_pp(dd1)
dd1[dd1<0] = 0
dd1[dd1>=len(dd1)] = len(dd1)-1
dd1 = list(dd1)
dd_s.append(dd1)
# Graph Reconstruction
mat2 = np.zeros([mat0_node,mat0_node],dtype=np.int8)
for i in range(comm_n):
# Intra-community
dd_ind = mat1_pvs[i]
dd1 = dd_s[i]
mat2[np.ix_(dd_ind,dd_ind)] = generate_intra_edge(dd1)
# Inter-community
for j in range(i+1,comm_n):
ev1 = ev_mat[i,j]
pj = mat1_pvs[j]
if ev1 > 0:
c1 = np.random.choice(pi,ev1)
c2 = np.random.choice(pj,ev1)
for ind in range(ev1):
mat2[c1[ind],c2[ind]] = 1
mat2[c2[ind],c1[ind]] = 1
mat2 = mat2 + np.transpose(mat2)
mat2 = np.triu(mat2,1)
mat2 = mat2 + np.transpose(mat2)
mat2[mat2>0] = 1
mat2_graph = nx.from_numpy_array(mat2,create_using=nx.Graph)
# save the graph
# file_name = './result/' + 'PrivGraph_%s_%.1f_%d.txt' %(dataset_name,epsilon,exper)
# write_edge_txt(mat2,mid,file_name)
#evaluate
mat2_edge = mat2_graph.number_of_edges()
mat2_node = mat2_graph.number_of_nodes()
mat2_par = community.best_partition(mat2_graph)
mat2_mod = community.modularity(mat2_par,mat2_graph)
mat2_cc = nx.transitivity(mat2_graph)
mat2_degree = np.sum(mat2,0)
mat2_deg_dist = np.bincount(np.int64(mat2_degree)) # degree distribution
mat2_evc = nx.eigenvector_centrality(mat2_graph,max_iter=10000)
mat2_evc_a = dict(sorted(mat2_evc.items(),key = lambda x:x[1],reverse=True))
mat2_evc_ak = list(mat2_evc_a.keys())
mat2_evc_val = np.array(list(mat2_evc_a.values()))
mat2_diam = cal_diam(mat2)
# calculate the metrics
# clustering coefficent
cc_rel = cal_rel(mat0_cc,mat2_cc)
# degree distribution
deg_kl = cal_kl(mat0_deg_dist,mat2_deg_dist)
# modularity
mod_rel = cal_rel(mat0_mod,mat2_mod)
# NMI
labels_true = list(mat0_par.values())
labels_pred = list(mat2_par.values())
nmi = metrics.normalized_mutual_info_score(labels_true,labels_pred)
# Overlap of eigenvalue nodes
evc_overlap = cal_overlap(mat0_evc_ak,mat2_evc_ak,np.int64(0.01*mat0_node))
# MAE of EVC
evc_MAE = cal_MAE(mat0_evc_val,mat2_evc_val,k=evc_kn)
# diameter
diam_rel = cal_rel(mat0_diam,mat2_diam)
nmi_arr[exper] = nmi
cc_rel_arr[exper] = cc_rel
deg_kl_arr[exper] = deg_kl
mod_rel_arr[exper] = mod_rel
evc_overlap_arr[exper] = evc_overlap
evc_MAE_arr[exper] = evc_MAE
diam_rel_arr[exper] = diam_rel
print('Nodes=%d,Edges=%d,nmi=%.4f,cc_rel=%.4f,deg_kl=%.4f,mod_rel=%.4f,evc_overlap=%.4f,evc_MAE=%.4f,diam_rel=%.4f' \
%(mat2_node,mat2_edge,nmi,cc_rel,deg_kl,mod_rel,evc_overlap,evc_MAE,diam_rel))
data_col = [epsilon,exper,n1,nmi,evc_overlap,evc_MAE,deg_kl, \
diam_rel,cc_rel,mod_rel]
col_len = len(data_col)
data_col = np.array(data_col).reshape(1,col_len)
data1 = pd.DataFrame(data_col,columns=cols)
all_data = all_data.append(data1)
all_nmi_arr.append(np.mean(nmi_arr))
all_cc_rel.append(np.mean(cc_rel_arr))
all_deg_kl.append(np.mean(deg_kl_arr))
all_mod_rel.append(np.mean(mod_rel_arr))
all_evc_overlap.append(np.mean(evc_overlap_arr))
all_evc_MAE.append(np.mean(evc_MAE_arr))
all_diam_rel.append(np.mean(diam_rel_arr))
print('all_index=%d/%d Done.%.2fs\n'%(ni+1,len(N_List),time.time()-ti))
res_path = './result'
save_name = res_path + '/' + '%s_%.2f_%.2f_%.2f_%d.csv' %(dataset_name,epsilon,e1_r,e2_r,exp_num)
if not os.path.exists(res_path):
os.mkdir(res_path)
if save_csv == True:
all_data.to_csv(save_name,index=False,sep=',')
print('-----------------------------')
print('dataset:',dataset_name)
print('epsilon=',epsilon)
print('all_N=',N_List)
print('all_nmi_arr=',all_nmi_arr)
print('all_evc_overlap=',all_evc_overlap)
print('all_evc_MAE=',all_evc_MAE)
print('all_deg_kl=',all_deg_kl)
print('all_diam_rel=',all_diam_rel)
print('all_cc_rel=',all_cc_rel)
print('all_mod_rel=',all_mod_rel)
print('All time:%.2fs'%(time.time()-t_begin))
if __name__ == '__main__':
# set the dataset
# 'Facebook', 'CA-HepPh', 'Enron'
dataset_name = 'Chamelon'
# set the privacy budget
epsilon = 2
# set the ratio of the privacy budget
e1_r = 1/3
e2_r = 1/3
# set the number of experiments
exp_num = 10
# set the number of nodes for community initialization, list type
N_List = [5,10,15,20,25,30,35]
# run the function
main_vary_N(dataset_name=dataset_name,epsilon=epsilon,e1_r=e1_r,e2_r=e2_r,N_List=N_List,exp_num=exp_num)