forked from cms-btv-pog/BTVNanoCommissioning
-
Notifications
You must be signed in to change notification settings - Fork 2
/
runner.py
1008 lines (937 loc) · 38.6 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
import json
import argparse
import time
import numpy as np
import uproot
from coffea.util import load, save
from coffea import processor
from coffea.nanoevents import PFNanoAODSchema
from BTVNanoCommissioning.workflows import workflows
def validate(file):
try:
fin = uproot.open(file)
return fin["Events"].num_entries
except:
print("Corrupted file: {}".format(file))
return file
def check_port(port):
import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:
sock.bind(("0.0.0.0", port))
available = True
except:
available = False
sock.close()
return available
def retry_handler(exception, task_record):
from parsl.executors.high_throughput.interchange import ManagerLost
if isinstance(exception, ManagerLost):
return 0.1
else:
return 1
## From condor/submitter.py https://github.com/cms-btv-pog/BTVNanoCommissioning/blob/9edb9ed6bb0b28730b8de9e5aa1142ec4fdf74b7/condor/submitter.py
# create t
def make_tarfile(output_filename, source_dir, exclude_dirs=[]):
import tarfile
with tarfile.open(output_filename, "w:gz") as tar:
for root, dirs, files in os.walk(source_dir):
dirs[:] = [
d for d in dirs if d not in exclude_dirs
] # Exclude specified directories
for file in files:
file_path = os.path.join(root, file)
tar.add(file_path, arcname=os.path.relpath(file_path, source_dir))
def get_condor_submitter_parser(parser):
parser.add_argument(
"--jobName",
help="Condor job name to make the job directory",
required=True,
)
parser.add_argument(
"--condorFileSize",
type=int,
default=50,
help="Number of files proceed per condor job",
)
parser.add_argument(
"--outputXrootdDir",
help="Output directory for xrootd files. Start with root://",
required=True,
)
parser.add_argument(
"--remoteRepo",
default=None,
help="If specified, access BTVNanoCommsioning from a remote tarball (downloaded via https), instead of from a transferred sandbox",
)
return parser
def IO_parser(parser):
## Inputs
parser.add_argument(
"--wf",
"--workflow",
dest="workflow",
choices=list(workflows.keys()),
help="Which processor to run",
required=True,
)
parser.add_argument(
"-o",
"--output",
default=r"hists.coffea",
help="Output histogram filename (default: %(default)s)",
)
parser.add_argument(
"--json",
dest="samplejson",
default="dummy_samples.json",
help="JSON file containing dataset and file locations (default: %(default)s)",
)
return parser
def config_parser(parser):
## Configuations
parser.add_argument("--year", default="2023", required=True, help="Year")
parser.add_argument(
"--campaign",
required=True,
default="Summer23",
help="Dataset campaign, change the corresponding correction files",
)
parser.add_argument(
"--isSyst",
default="False",
type=str,
choices=["False", "all", "weight_only", "JERC_split", "JP_MC"],
help="Run with systematics, all, weights_only(no JERC uncertainties included),JERC_split, None",
)
parser.add_argument("--isArray", action="store_true", help="Output root files")
parser.add_argument(
"--noHist", action="store_true", help="Not output coffea histogram"
)
parser.add_argument(
"--overwrite", action="store_true", help="Overwrite existing files"
)
return parser
def scaleout_parser(parser):
# Scale out
parser.add_argument(
"--executor",
choices=[
"iterative",
"futures",
"parsl/slurm",
"parsl/condor",
"parsl/condor/naf_lite",
"dask/condor",
"dask/condor/brux",
"dask/slurm",
"dask/lpc",
"dask/lxplus",
"dask/casa",
"condor_standalone",
],
default="futures",
help="The type of executor to use (default: %(default)s). Other options can be implemented. "
"For example see https://parsl.readthedocs.io/en/stable/userguide/configuring.html"
"- `parsl/slurm` - tested at DESY/Maxwell"
"- `parsl/condor` - tested at DESY, RWTH"
"- `parsl/condor/naf_lite` - tested at DESY"
"- `dask/condor/brux` - tested at BRUX (Brown U)"
"- `dask/slurm` - tested at DESY/Maxwell"
"- `dask/condor` - tested at DESY, RWTH"
"- `dask/lpc` - custom lpc/condor setup (due to write access restrictions)"
"- `dask/lxplus` - custom lxplus/condor setup (due to port restrictions)",
)
parser.add_argument(
"-j",
"--workers",
type=int,
default=3,
help="Number of workers (cores/threads) to use for multi-worker executors "
"(e.g. futures or condor) (default: %(default)s)",
)
parser.add_argument(
"-s",
"--scaleout",
type=int,
default=6,
help="Number of nodes to scale out to if using slurm/condor. Total number of "
"concurrent threads is ``workers x scaleout`` (default: %(default)s)",
)
parser.add_argument(
"--memory",
type=float,
default=4.0,
help="Memory used in jobs default ``(default: %(default)s)",
)
parser.add_argument(
"--disk",
type=float,
default=4,
help="Disk used in jobs default ``(default: %(default)s)",
)
parser.add_argument(
"--voms",
default=None,
type=str,
help="Path to voms proxy, made accessible to worker nodes. By default a copy will be made to $HOME.",
)
parser.add_argument(
"--chunk",
type=int,
default=200000,
metavar="N",
help="Number of events per process chunk",
)
parser.add_argument(
"--retries",
type=int,
default=25,
metavar="N",
help="Number of retries for coffea processor",
)
parser.add_argument(
"--fsize",
type=int,
default=50,
help="(Specific for dask/lxplus file splitting, default: %(default)s)\n Numbers of files processed per dask-worker",
)
parser.add_argument(
"--index",
type=str,
default="0,0",
help=f"(Specific for dask/lxplus file splitting, default: %(default)s)\n Format: $dict_index_start,$file_index_start,$dict_index_stop,$file_index_stop. Stop indices are optional. $dict_index refers to the index, splitted $dict_index and $file_index with ','"
"$dict_index refers to the sample dictionary of the samples json file. $file_index refers to the N-th batch of files per dask-worker, with its size being defined by the option --index. The job will start (stop) submission from (with) the corresponding indices.",
)
return parser
def debug_parser(parser):
# Debugging
parser.add_argument(
"--validate",
action="store_true",
help="Do not process, just check all files are accessible",
)
parser.add_argument("--skipbadfiles", action="store_true", help="Skip bad files.")
parser.add_argument(
"--only", type=str, default=None, help="Only process specific dataset or file"
)
parser.add_argument(
"--limit",
type=int,
default=None,
metavar="N",
help="Limit to the first N files of each dataset in sample JSON",
)
parser.add_argument(
"--max",
type=int,
default=None,
metavar="N",
help="Max number of chunks to run in total",
)
return parser
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Run analysis on baconbits files using processor coffea files"
)
parser = IO_parser(parser)
parser = config_parser(parser)
parser = scaleout_parser(parser)
parser = debug_parser(parser)
args = parser.parse_args()
if args.isSyst == "False":
args.isSyst = False
print("Running with the following options:")
print(args)
ogoutput = args.output
histoutdir = ogoutput.split(".")[0]
coffeaoutput = f"{histoutdir}/{ogoutput}"
outdir = "arrays_" + histoutdir
basename = ogoutput.replace(".coffea", "").replace("hists_", "")
if args.output == parser.get_default("output"):
index = args.samplejson.rfind("/") + 1
sample_json = args.samplejson[index:]
histoutdir = f"hists_{args.workflow}_{sample_json.rstrip('.json')}"
outdir = f"arrays_{args.workflow}_{sample_json.rstrip('.json')}"
coffeaoutput = (
f'{histoutdir}/hists_{args.workflow}_{(sample_json).rstrip(".json")}.coffea'
)
os.system(f"mkdir -p {histoutdir}")
# load dataset
with open(args.samplejson) as f:
sample_dict = json.load(f)
for key in sample_dict.keys():
sample_dict[key] = sample_dict[key][: args.limit]
if args.executor == "dask/casa":
for key in sample_dict.keys():
sample_dict[key] = [
path.replace("xrootd-cms.infn.it/", "xcache")
for path in sample_dict[key]
]
# check file dict size - avoid large memory consumption for local machine
filesize = np.sum(np.array([len(sample_dict[key]) for key in sample_dict.keys()]))
splitjobs = False
if filesize > 200 and "lxplus" in args.executor:
splitjobs = True
# For debugging
if args.only is not None:
if args.only in sample_dict.keys(): # is dataset
sample_dict = dict([(args.only, sample_dict[args.only])])
coffeaoutput = coffeaoutput.replace(".coffea", f"_{args.only}.coffea")
elif args.only.isdigit():
isamp = int(args.only)
nsamp = len(sample_dict.keys())
if isamp >= nsamp:
print(
f"There are {nsamp} datasets, please use --only n with n<{nsamp}."
)
key = list(sample_dict.keys())[isamp]
print(f"Will process only {key} instead of all {nsamp} datasets.")
sample_dict = dict([(key, sample_dict[key])])
coffeaoutput = coffeaoutput.replace(".coffea", f"_{key}.coffea")
elif "*" in args.only: # wildcard for datasets
_new_dict = {}
print("Will only proces the following datasets:")
for k, v in sample_dict.items():
if args.only.replace("*", "") in k:
print(" ", k)
_new_dict[k] = v
sample_dict = _new_dict
else: # is file
for key in sample_dict.keys():
if args.only in sample_dict[key]:
sample_dict = dict([(key, [args.only])])
# Scan if files can be opened
if args.validate:
start = time.time()
from p_tqdm import p_map
all_invalid = []
for sample in sample_dict.keys():
_rmap = p_map(
validate,
sample_dict[sample],
num_cpus=args.workers,
desc=f"Validating {sample[:20]}...",
)
_results = list(_rmap)
counts = np.sum(
[r for r in _results if np.isreal(r) and isinstance(r, int)]
)
all_invalid += [r for r in _results if isinstance(r, str)]
print("Events:", np.sum(counts))
print("Bad files:")
for fi in all_invalid:
print(f" {fi}")
end = time.time()
print("TIME:", time.strftime("%H:%M:%S", time.gmtime(end - start)))
if len(all_invalid) == 0:
print("No bad files found!")
else:
if input("Remove bad files? (y/n): ") == "y":
print("Removing...")
json = args.samplejson
jsonnew = json.replace(".json", "") + "_backup.json"
os.system("mv %s %s" % (json, jsonnew))
inf = open(jsonnew, "r")
outf = open(json, "w")
for line in inf:
foundline = False
for fi in all_invalid:
if fi in line:
print(f"Removing: {fi}")
foundline = True
break
if not foundline:
outf.write(line)
sys.exit(0)
# load workflow
processor_instance = workflows[args.workflow](
args.year,
args.campaign,
outdir,
args.isSyst,
args.isArray,
args.noHist,
args.chunk,
)
## create tmp directory and check file exist or not
from os import path
if path.exists(f"{coffeaoutput}") and args.overwrite == False:
raise Exception(f"{coffeaoutput} exists")
if args.isArray:
if path.exists(outdir) and args.overwrite == False and args.only is None:
raise Exception("Directory exists")
else:
os.system(f"mkdir -p {outdir}")
if args.executor not in ["futures", "iterative", "dask/lpc", "dask/casa"]:
"""
dask/parsl needs to export x509 to read over xrootd
dask/lpc uses custom jobqueue provider that handles x509
"""
if args.voms is not None:
_x509_path = args.voms
else:
try:
_x509_localpath = (
[
l
for l in os.popen("voms-proxy-info").read().split("\n")
if l.startswith("path")
][0]
.split(":")[-1]
.strip()
)
except:
raise RuntimeError(
"x509 proxy could not be parsed, try creating it with 'voms-proxy-init'"
)
_x509_path = os.environ["HOME"] + f'/.{_x509_localpath.split("/")[-1]}'
os.system(f"cp {_x509_localpath} {_x509_path}")
job_script_prologue = [
"export XRD_RUNFORKHANDLER=1",
f"export X509_USER_PROXY={_x509_path}",
f'export X509_CERT_DIR={os.environ["X509_CERT_DIR"]}',
f"export PYTHONPATH=$PYTHONPATH:{os.getcwd()}",
]
pathvar = [i for i in os.environ["PATH"].split(":") if "envs/btv_coffea/" in i][
0
]
condor_extra = [
f'source {os.environ["HOME"]}/.bashrc',
]
if "brux" in args.executor:
job_script_prologue.append(f"cd {os.getcwd()}")
condor_extra.append(f"export PATH={pathvar}:$PATH")
else:
condor_extra.append(f"cd {os.getcwd()}")
# Check if Conda is available
conda_check_command = "command -v conda"
conda_available = os.system(conda_check_command) == 0
# Check if Mamba is available
mamba_check_command = "command -v micromamba"
mamba_available = os.system(mamba_check_command) == 0
# Set up environment based on availability
if conda_available and mamba_available:
use_conda = True # Set to False if you prefer Micromamba
if use_conda:
condor_extra.append(f'conda activate {os.environ["CONDA_PREFIX"]}')
else:
condor_extra.append(
f"micromamba activate {os.environ['MAMBA_EXE']}"
)
elif conda_available:
condor_extra.append(f'conda activate {os.environ["CONDA_PREFIX"]}')
elif mamba_available:
condor_extra.append(f"micromamba activate {os.environ['MAMBA_EXE']}")
else:
# Handle the case when neither Conda nor Micromamba is available
print(
"Neither Conda nor Micromamba is available in the environment. At least install one of them."
)
#########
# Execute
if args.executor in ["futures", "iterative", "standalone_condor"]:
if args.executor == "iterative":
_exec = processor.iterative_executor
else:
_exec = processor.futures_executor
if args.executor != "standalone_condor":
output = processor.run_uproot_job(
sample_dict,
treename="Events",
processor_instance=processor_instance,
executor=_exec,
executor_args={
"skipbadfiles": args.skipbadfiles,
"schema": PFNanoAODSchema,
"workers": args.workers,
"xrootdtimeout": 900,
},
chunksize=args.chunk,
maxchunks=args.max,
)
## standalone condor from https://github.com/cms-btv-pog/BTVNanoCommissioning/blob/9edb9ed6bb0b28730b8de9e5aa1142ec4fdf74b7/condor/submitter.py
else:
current_dir = os.path.dirname(os.path.abspath(__file__))
base_dir = current_dir.replace("/condor", "")
if args.remoteRepo is not None:
print(
"Will use a remote path to access BTVNanoCommissioning:",
args.remoteRepo,
)
else:
print("Tarring BTVNanoCommissioning directory...")
skip_tar = False
if os.path.exists("BTVNanoCommissioning.tar.gz"):
user_input = input(
"BTVNanoCommissioning.tar.gz already exists, skip the tarring? (y/n): "
)
if user_input.lower() == "y":
skip_tar = True
elif user_input.lower() == "n":
skip_tar = False
os.remove("BTVNanoCommissioning.tar.gz")
else:
raise Exception("Invalid input, exiting")
if not skip_tar:
make_tarfile(
"BTVNanoCommissioning.tar.gz",
base_dir,
exclude_dirs=[
"jsonpog-integration",
"BTVNanoCommissioning.egg-info",
],
)
import shutil
# Create job dir
job_dir = f"jobs_{args.jobName}"
if os.path.exists(job_dir):
user_input = input("Job directory already exists, overwrite? (y/n): ")
if user_input.lower() == "y":
shutil.rmtree(job_dir)
else:
raise Exception("Job exiting...")
print(f"Job directory created: {job_dir}")
os.mkdir(job_dir)
os.mkdir(job_dir + "/log")
# Store job submission files
## store parser arguments
with open(os.path.join(job_dir, "arguments.json"), "w") as json_file:
json.dump(vars(args), json_file, indent=4)
## split the sample json
with open(args.samplejson) as f:
sample_dict = json.load(f)
split_sample_dict = {}
counter = 0
only = []
if args.only is not None:
if "*" in args.only:
only = [
k
for k in sample_dict.keys()
if k.lstrip("/").startswith(args.only.rstrip("*"))
]
else:
only.append(args.only)
for sample_name, files in sample_dict.items():
if len(only) != 0 and sample_name not in only:
continue
for ifile in range(
(len(files) + args.condorFileSize - 1) // args.condorFileSize
):
split_sample_dict[counter] = {
sample_name: files[
ifile
* args.condorFileSize : (ifile + 1)
* args.condorFileSize
]
}
counter += 1
## store the split sample json file
with open(os.path.join(job_dir, "split_samples.json"), "w") as json_file:
json.dump(split_sample_dict, json_file, indent=4)
## store the jobnum list (0..jobnum-1)
with open(os.path.join(job_dir, "jobnum_list.txt"), "w") as f:
f.write("\n".join([str(i) for i in range(counter)]))
## store the jdl file
jdl_template = """Universe = vanilla
Executable = {executable}
+ProjectName="cms.org.cern"
Arguments = $(JOBNUM)
request_cpus = 1
request_memory = 2000
use_x509userproxy = true
+JobFlavour = "tomorrow"
Log = {log_dir}/job.log_$(Cluster)
Output = {log_dir}/job.out_$(Cluster)-$(Process)
Error = {log_dir}/job.err_$(Cluster)-$(Process)
should_transfer_files = YES
when_to_transfer_output = ON_EXIT_OR_EVICT
transfer_input_files = {transfer_input_files}
transfer_output_files = .success
Queue JOBNUM from {jobnum_file}
""".format(
executable=f"{base_dir}/condor/execute.sh",
log_dir=f"{base_dir}/{job_dir}/log",
transfer_input_files=f"{base_dir}/{job_dir}/arguments.json,{base_dir}/{job_dir}/split_samples.json,{base_dir}/{job_dir}/jobnum_list.txt"
+ (
""
if args.remoteRepo
else f",{base_dir}/BTVNanoCommissioning.tar.gz"
),
jobnum_file=f"{base_dir}/{job_dir}/jobnum_list.txt",
)
with open(os.path.join(job_dir, "submit.jdl"), "w") as f:
f.write(jdl_template)
print(
f"Setup completed. Now submit the condor jobs by:\n condor_submit {job_dir}/submit.jdl"
)
elif "parsl" in args.executor:
import parsl
from parsl.providers import LocalProvider, CondorProvider, SlurmProvider
from parsl.channels import LocalChannel
from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.launchers import SrunLauncher
from parsl.addresses import address_by_hostname, address_by_query
if "slurm" in args.executor:
htex_config = Config(
executors=[
HighThroughputExecutor(
label="coffea_parsl_slurm",
address=address_by_hostname(),
prefetch_capacity=0,
provider=SlurmProvider(
channel=LocalChannel(script_dir="logs_parsl"),
launcher=SrunLauncher(),
mem_per_node=args.memory,
max_blocks=(args.scaleout) + 10,
init_blocks=args.scaleout,
partition="all",
worker_init="\n".join(job_script_prologue),
walltime="00:120:00",
),
)
],
retries=args.retries,
)
if splitjobs:
htex_config = Config(
executors=[
HighThroughputExecutor(
label="run",
address=address_by_hostname(),
prefetch_capacity=0,
provider=SlurmProvider(
channel=LocalChannel(script_dir="logs_parsl"),
launcher=SrunLauncher(),
mem_per_node=args.memory,
max_blocks=(args.scaleout) + 10,
init_blocks=args.scaleout,
partition="all",
worker_init="\n".join(job_script_prologue),
walltime="00:120:00",
),
),
HighThroughputExecutor(
label="merge",
address=address_by_hostname(),
prefetch_capacity=0,
provider=SlurmProvider(
channel=LocalChannel(script_dir="logs_parsl"),
launcher=SrunLauncher(),
mem_per_node=args.memory,
max_blocks=(args.scaleout) + 10,
init_blocks=args.scaleout,
partition="all",
worker_init="\n".join(job_script_prologue),
walltime="00:30:00",
),
),
],
retries=args.retries,
retry_handler=retry_handler,
)
elif "condor" in args.executor:
if "naf_lite" in args.executor:
## code source: https://github.com/cms-rwth/CoffeaRunner/commit/d5ef86f76723e75b67bb212c3644c4012cae05be (Annika Stein)
htex_config = Config(
executors=[
HighThroughputExecutor(
label="coffea_parsl_condor",
address=address_by_query(),
max_workers=1,
worker_debug=True,
provider=CondorProvider(
nodes_per_block=1,
cores_per_slot=args.workers,
mem_per_slot=2, # lite job / opportunistic can only use this much
init_blocks=args.scaleout,
max_blocks=args.scaleout + 5,
worker_init="\n".join(
job_script_prologue + condor_extra
),
walltime="03:00:00", # lite / short queue requirement
),
)
],
retries=args.retries,
retry_handler=retry_handler,
)
if splitjobs:
htex_config = Config(
executors=[
HighThroughputExecutor(
label="run",
address=address_by_query(),
max_workers=1,
worker_debug=True,
provider=CondorProvider(
nodes_per_block=1,
cores_per_slot=args.workers,
mem_per_slot=2, # lite job / opportunistic can only use this much
init_blocks=args.scaleout,
max_blocks=args.scaleout + 5,
worker_init="\n".join(
job_script_prologue + condor_extra
),
walltime="03:00:00", # lite / short queue requirement
),
),
HighThroughputExecutor(
label="merge",
address=address_by_query(),
max_workers=1,
worker_debug=True,
provider=CondorProvider(
nodes_per_block=1,
cores_per_slot=args.workers,
mem_per_slot=2, # lite job / opportunistic can only use this much
init_blocks=args.scaleout,
max_blocks=args.scaleout + 5,
worker_init="\n".join(
job_script_prologue + condor_extra
),
walltime="00:30:00", # lite / short queue requirement
),
),
],
retries=args.retries,
retry_handler=retry_handler,
)
else:
htex_config = Config(
executors=[
HighThroughputExecutor(
label="coffea_parsl_condor",
address=address_by_query(),
max_workers=1,
provider=CondorProvider(
nodes_per_block=1,
cores_per_slot=args.workers,
mem_per_slot=args.memory,
init_blocks=args.scaleout,
max_blocks=(args.scaleout) + 10,
worker_init="\n".join(
job_script_prologue + condor_extra
),
walltime="03:00:00",
),
)
],
retries=args.retries,
)
if splitjobs:
htex_config = Config(
executors=[
HighThroughputExecutor(
label="run",
address=address_by_query(),
max_workers=1,
provider=CondorProvider(
nodes_per_block=1,
cores_per_slot=args.workers,
mem_per_slot=args.memory,
init_blocks=args.scaleout,
max_blocks=(args.scaleout) + 10,
worker_init="\n".join(
job_script_prologue + condor_extra
),
walltime="03:00:00",
),
),
HighThroughputExecutor(
label="merge",
address=address_by_query(),
max_workers=1,
provider=CondorProvider(
nodes_per_block=1,
cores_per_slot=args.workers,
mem_per_slot=args.memory,
init_blocks=args.scaleout,
max_blocks=(args.scaleout) + 10,
worker_init="\n".join(
job_script_prologue + condor_extra
),
walltime="03:00:00",
),
),
],
retries=args.retries,
retry_handler=retry_handler,
)
else:
raise NotImplementedError
dfk = parsl.load(htex_config)
if not splitjobs:
output = processor.run_uproot_job(
sample_dict,
treename="Events",
processor_instance=processor_instance,
executor=processor.parsl_executor,
executor_args={
"skipbadfiles": args.skipbadfiles,
"schema": PFNanoAODSchema,
"config": None,
},
chunksize=args.chunk,
maxchunks=args.max,
)
else:
output = processor.run_uproot_job(
sample_dict,
treename="Events",
processor_instance=processor_instance,
executor=processor.parsl_executor,
executor_args={
"skipbadfiles": args.skipbadfiles,
"schema": PFNanoAODSchema,
"merging": True,
"merges_executors": ["merge"],
"jobs_executors": ["run"],
"config": None,
},
chunksize=args.chunk,
maxchunks=args.max,
)
elif "dask" in args.executor:
from dask_jobqueue import SLURMCluster, HTCondorCluster
from distributed import Client
from dask.distributed import performance_report
if "lpc" in args.executor:
job_script_prologue = [f"export PYTHONPATH=$PYTHONPATH:{os.getcwd()}"]
from lpcjobqueue import LPCCondorCluster
cluster = LPCCondorCluster(
transfer_input_files="/srv/src/",
ship_env=True,
job_script_prologue=job_script_prologue,
)
elif "lxplus" in args.executor:
# details: https://batchdocs.web.cern.ch/specialpayload/dask.html
n_port = 8786
if not check_port(8786):
raise RuntimeError(
"Port '8786' is not occupied on this node. Try another one."
)
import socket
daskjobnm = (
"dask_job_output" + os.uname()[1].split("lxplus")[-1].split(".cern")[0]
)
cluster = HTCondorCluster(
cores=1,
memory="2GB", # hardcoded
disk="1GB",
death_timeout="300",
nanny=False,
scheduler_options={"port": n_port, "host": socket.gethostname()},
job_extra_directives={
"log": daskjobnm + ".log",
"output": daskjobnm + ".out",
"error": daskjobnm + ".err",
"should_transfer_files": "Yes",
"when_to_transfer_output": "ON_EXIT",
"+JobFlavour": '"workday"',
},
worker_extra_args=["--worker-port 10000:10100"],
job_script_prologue=job_script_prologue,
)
elif "slurm" in args.executor:
cluster = SLURMCluster(
queue="all",
cores=args.workers,
processes=args.scaleout,
memory=f"{args.memory}GB",
disk=f"{args.disk}GB",
retries=args.retries,
walltime="00:30:00",
job_script_prologue=job_script_prologue,
)
elif "condor" in args.executor:
portopts = {}
if "brux" in args.executor:
import socket
portopts = {"host": socket.gethostname()}
cluster = HTCondorCluster(
cores=args.workers,
memory=f"{args.memory}GB",
disk=f"{args.disk}GB",
scheduler_options=portopts,
job_script_prologue=job_script_prologue,
)
if args.executor == "dask/casa":
client = Client("tls://localhost:8786")
import shutil
shutil.make_archive("workflows", "zip", base_dir="workflows")
client.upload_file("workflows.zip")
else:
cluster.adapt(minimum=args.scaleout)
client = Client(cluster)
print("Waiting for at least one worker...")
client.wait_for_workers(1)
with performance_report(filename="dask-report.html"):
if args.executor != "dask/lxplus":
output = processor.run_uproot_job(
sample_dict,
treename="Events",
processor_instance=processor_instance,
executor=processor.dask_executor,
executor_args={
"client": client,
"skipbadfiles": args.skipbadfiles,
"schema": PFNanoAODSchema,
"retries": args.retries,
},
chunksize=args.chunk,
maxchunks=args.max,
)
else:
findex = int(args.index.split(",")[1])
for sindex, sample in enumerate(sample_dict.keys()):
if sindex < int(args.index.split(",")[0]):
continue
if int(args.index.split(",")[1]) == findex:
mins = findex * args.fsize
else:
mins = 0
findex = 0
while mins < len(sample_dict[sample]):
splitted = {}
maxs = mins + args.fsize
splitted[sample] = sample_dict[sample][mins:maxs]
mins = maxs
findex = findex + 1
if (
len(args.index.split(",")) == 4
and findex > int(args.index.split(",")[3])
and sindex > int(args.index.split(",")[2])
):
break
output = processor.run_uproot_job(
splitted,
treename="Events",
processor_instance=processor_instance,
executor=processor.dask_executor,
executor_args={
"client": client,
"skipbadfiles": args.skipbadfiles,
"schema": PFNanoAODSchema,
"retries": args.retries,
},
chunksize=args.chunk,
maxchunks=args.max,
)
if args.noHist == False:
save(
output,
coffeaoutput.replace(
".coffea", f"_{sindex}_{findex}.coffea"